Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Med Chem ; 2024 06 05.
Article in English | MEDLINE | ID: mdl-38847259

ABSTRACT

INTRODUCTION: Rhipicephalus microplus, an important cattle ectoparasite, is responsible for a substantial negative impact on the economy due to productivity loss. The emergence of resistance to widely used commercial acaricides has sparked efforts to explore alternative products for tick control. METHOD: To address this challenge, innovative solutions targeting essential tick enzymes, like glutathione S-transferase (GST), have gained attention. Dimeric flavonoids, particularly brachydins (BRAs), have demonstrated various biological activities, including antiparasitic effects. The objectives of this study were to isolate four dimeric flavonoids from Fridericia platyphylla roots and to evaluate their potential as inhibitors of R. microplus GST. RESULTS: In vitro assays confirmed the inhibition of R. microplus GST by BRA-G, BRA-I, BRA-J, and BRA-K with IC50 values of 0.075, 0.079, 0.075, and 0.058 mg/mL, respectively, with minimal hemolytic effects. Molecular docking of BRA-G, BRA-I, BRA-J, and BRA-K in a threedimensional model of R. microplus GST revealed predicted interactions with MolDock Scores of - 142.537, -126.831, -108.571, and -123.041, respectively. Both in silico and in vitro analyses show that brachydins are potential inhibitors of R. microplus GST. CONCLUSION: The findings of this study deepen our understanding of GST inhibition in ticks, affirming its viability as a drug target. This knowledge contributes to the advancement of treatment modalities and strategies for improved tick control.

2.
Plants (Basel) ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794461

ABSTRACT

The γ-aminobutyric acid (GABA) receptors play pivotal roles in the transmission of neuronal information in the nervous system of insects, which has led these proteins to be targeted by synthetic and natural products. Here, we assessed the insecticidal potential of the essential oil of Pectis brevipedunculata (Gardner) Sch. Bip., a neotropical Asteraceae plant used in traditional medicine, for controlling Drosophila suzukii (Matsumura) adults by feeding exposure. By using in silico approaches, we disentangle the contribution of GABA receptors and other potential neuronal targets (e.g., acetylcholinesterase, glutathione-S-transferases) in insects that may explain the essential oil differential activities against D. suzukii and two essential pollinator bees (Apis mellifera Linnaeus and Partamona helleri Friese). Neral (26.7%) and geranial (33.9%) were the main essential oil components which killed D. suzukii with an estimated median lethal concentration (LC50) of 2.25 µL/mL. Both pollinator forager bee species, which would likely contact this compound in the field, were more tolerant to the essential oil and did not have their diet consumptions affected by the essential oil. Based on the molecular predictions for the three potential targets and the essential oil main components, a higher affinity of interaction with the GABA receptors of D. suzukii (geranial -6.2 kcal/mol; neral -5.8 kcal/mol) in relation to A. mellifera (geranial -5.2 kcal/mol; neral -4.9 kcal/mol) would contribute to explaining the difference in toxicities observed in the bioassays. Collectively, our findings indicated the involvement of GABA receptors in the potential of P. brevipedunculata essential oil as an alternative tool for controlling D. suzukii.

3.
Talanta ; 276: 126237, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38776769

ABSTRACT

Lysergic acid diethylamide (LSD) and two phenethylamine classes (NBOHs and NBOMes) are the main illicit drugs found in seized blotter papers. The preliminary identification of these substances is of great interest for forensic analysis. In this context, this work constitutes the inaugural demonstration of an efficient methodology for the selective detection of LSD, NBOHs, and NBOMes, utilizing a fully 3D-printed electrochemical double cell (3D-EDC). This novel 3D-EDC enables the use of two working electrodes and/or two supporting electrolytes (at different pHs) in the same detection system, with the possibility of shared or individual auxiliary and pseudo-reference electrodes. Thus, the selective voltammetric detection of these substances is proposed using two elegant strategies: (i) utilizing the same 3D-EDC platform with two working electrodes (boron-doped diamond (BDD) and 3D-printed graphite), and (ii) employing two pH levels (4.0 and 12.0) with 3D-printed graphite electrode. This comprehensive framework facilitates a fast, robust, and uncomplicated electrochemical analysis. Moreover, this configuration enables a rapid and sensitive detection of LSD, NBOHs, and NBOMes in seized samples, and can also provide quantitative analysis. The proposed method showed good stability of the electrochemical response with RSD <9 % for Ip and <5 % for Ep, evaluating all oxidation processes observed for studied analytes (n = 7) at two pH levels, using the same and different (n = 3) working electrodes. It demonstrates a broad linear range (20-100 and 20-70 µmol L-1) and a low LOD (1.0 µmol L-1) for quantification of a model molecule (LSD) at the two pHs studied. Hence, the 3D-EDC combined with voltammetric techniques using BDD and 3D-printed graphite electrodes on the same platform, or only with this last sensor at two pH values, provide a practical and robust avenue for preliminary identification of NBOHs, NBOMes, and LSD. This method embodies ease, swiftness, cost-efficiency, robustness, and selectivity as an on-site screening tool for forensic analysis.


Subject(s)
Electrochemical Techniques , Electrodes , Lysergic Acid Diethylamide , Printing, Three-Dimensional , Lysergic Acid Diethylamide/analogs & derivatives , Lysergic Acid Diethylamide/chemistry , Lysergic Acid Diethylamide/analysis , Electrochemical Techniques/methods , Phenethylamines/analysis , Illicit Drugs/analysis , Humans , Limit of Detection , Graphite/chemistry
4.
Pharmaceutics ; 16(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399306

ABSTRACT

Infectious and Parasitic Diseases (IPD) remain a challenge for medicine due to several interconnected reasons, such as antimicrobial resistance (AMR). American tegumentary leishmaniasis (ATL) is an overlooked IPD causing persistent skin ulcers that are challenging to heal, resulting in disfiguring scars. Moreover, it has the potential to extend from the skin to the mucous membranes of the nose, mouth, and throat in both humans and various animals. Given the limited effectiveness and AMR of current drugs, the exploration of new substances has emerged as a promising alternative for ATL treatment. Arrabidaea brachypoda (DC). Bureau is a native Brazilian plant rich in dimeric flavonoids, including Brachydin (BRA), which displays antimicrobial activity, but still little has been explored regarding the development of therapeutic formulations. In this work, we present the design of a low-cost liquid formulation based on the use of Pluronic F127 for encapsulation of high BRA concentration (LF-B500). The characterization techniques revealed that BRA-loaded F127 micelles are well-stabilized in an unusual worm-like form. The in vitro cytotoxicity assay demonstrated that LF-B500 was non-toxic to macrophages but efficient in the inactivation of forms of Leishmania amazonensis promastigotes with IC50 of 16.06 µg/mL. The results demonstrated that LF-B500 opened a new perspective on the use of liquid formulation-based natural products for ATL treatment.

5.
Heliyon ; 10(2): e24622, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312642

ABSTRACT

Leishmaniases are infectious-parasitic diseases that impact public health around the world. Antileishmanial drugs presented toxicity and increase in parasitic resistance. Studies with natural products show an alternative to this effect, and several metabolites have demonstrated potential in the treatment of various diseases. Terminalia catappa is a plant species with promising pharmaceutical properties. The objective of this work was to evaluate the therapeutic potential of extracts and fractions of T. catappa on Leishmania amazonensis and investigate the immunomodulatory mechanisms associated with its action. In anti-Leishmania assays, the ethyl acetate fraction exhibited activity against promastigotes (IC50 86.07 ± 1.09 µg/mL) and low cytotoxicity (CC50 517.70 ± 1.68 µg/mL). The ethyl acetate fraction also inhibited the intracellular parasite (IC50 25.74 ± 1.08 µg/mL) with a selectivity index of 20.11. Treatment with T. catappa ethyl acetate fraction did not alter nitrite production by peritoneal macrophages stimulated with L. amazonensis, although there was a decrease in unstimulated macrophages treated at 50 µg/mL (p = 0.0048). The T. catappa ethyl acetate fraction at 100 µg/mL increased TNF-α levels (p = 0.0238) and downregulated HO-1 (p = 0.0030) and ferritin (p = 0.0002) gene expression in L. amazonensis-stimulated macrophages. Additionally, the total flavonoid and ellagic acid content for ethyl acetate fraction was 13.41 ± 1.86 mg QE/g and 79.25 mg/g, respectively. In conclusion, the T. catappa ethyl acetate fraction showed leishmanicidal activity against different forms of L. amazonensis and displayed immunomodulatory mechanisms, including TNF-α production and expression of pro and antioxidant genes.

6.
Neotrop Entomol ; 53(2): 400-414, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38214825

ABSTRACT

Essential oils (EOs) produced by aromatic plants belonging to different families, such as Asteraceae, Lamiaceae, Lauraceae, Myrtaceae, and Piperaceae, are generally suggested as potential sources of new molecules with insecticidal activity. The EOs are constituted bioactive molecules that may have to control Drosophila suzukii (Matsumura), a serious economic invasive pest of small fruits worldwide. Currently, the control strategy against D. suzukii depends especially on treatment with synthetic insecticides. Due to impacts to human health and the environment, efforts have been made to seek efficient insecticides in chemical pest control. Thus, sixty-five oils extracted from plants were selected to find new alternative types of insecticides active against D. suzukii. The monoterpenes, such as limonene, α-pinene, 1,8-cineole, linalool, menthol, geranial, and neral, were the most representative, which stand out for their insecticidal efficiency. The OEs demonstrated to be used in the management of D. suzukii, thus being an effective strategy to control this pest, ensuring crop protection and agricultural sustainability. Therefore, the substitution by natural products or eco-friendly pesticides instead of synthetic pesticides represents a notable option to mitigate harmful effects on human health and the environment.


Subject(s)
Insecticides , Myrtaceae , Oils, Volatile , Humans , Animals , Insecticides/pharmacology , Drosophila , Insect Control , Myrtaceae/chemistry , Oils, Volatile/pharmacology
7.
Pharmaceutics ; 16(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38258098

ABSTRACT

Pectis brevipedunculata (Gardner) Sch.Bip., known in Brazil as alecrim do campo, is a small Asteraceae family plant with a calming effect and consumed as tea. This species contains components, such as neral and geranial, that display various biological activities, such as leishmanicidal. The aim was to chemically characterize the essential oil (EO) obtained from P. brevipedunculata (EO-PB) by hydrodistillation and a microemulsion formulated with EO (ME-PB), Tween 80 and Transcutol P, assess the leishmanicidal effect against Leishmania (L.) amazonensis promastigotes and cytotoxicity against RAW 264.7. EO-PB and ME-PB were analyzed by Gas Chromatography Mass Spectrometry (GC/MS). Monoterpene hydrocarbons were noteworthy among the identified compounds. The main EO-PB constituents were α-pinene and limonene, followed by neral and geranial, which were maintained in ME-PB. EO-PB presented an inhibitory concentration (IC50) of 20 µg/mL and ME-PB of 0.93 µg/mL. ME-PB inhibition towards the parasite was 20-fold higher than that of EO-PB. This indicated that EO incorporation to the microemulsion resulted in optimized biological activity. Selectivity indices indicate that ME-PB is more selective concerning parasite inhibition. Thus, ME-PB may comprise an adequate approach against Leishmania, as the inhibitory concentration (IC50) promastigotes was lower than that considered toxic for cells cell cytotoxicity of 50% (CC50).

9.
AAPS PharmSciTech ; 24(8): 212, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848719

ABSTRACT

Fridericia platyphylla (Cham.) L.G. Lohmann is a species native to the Brazilian cerrado, with promising bioactivity. The organic fraction of the roots is rich in unusual dimeric flavonoids, reported as potential candidates for cancer treatment. The exploration of these flavonoids is very important, considering their diverse biological activities and the need for innovative therapeutic options. This work aimed to develop and characterize a microemulsion loaded with a non-polar fraction (DCM). The constituents were chosen, and the pseudo-ternary diagram was constructed to determine the region of microemulsion formation. The microemulsions blank (ME), with 3% (ME3) and 5% (ME5) of fraction DCM, were characterized in terms of droplet size, zeta potential, and polydispersity index. Both MEs showed particle sizes <100 nm; only ME3 exhibited better values for polydispersity index and zeta potential and was therefore selected for further study. The organoleptic and physicochemical characteristics were evaluated, revealing limpidity and transparency typical of these microstructures, physiologically acceptable pH, refractive index of 1.42±0.01, and density of 1.017 g/cm3±0.01. The stability tests showed good stability profiles even after exposure to extreme thermal conditions, with minimal changes in pH and the content of the incorporated fraction. The in vitro release study demonstrated that ME3 enabled the controlled release of the fraction, with a cumulative amount released over 60% within 6 h. Furthermore, fraction DCM and ME3 exhibited no toxicity in Tenebrio molitor larvae. The developed microemulsion exhibited excellent properties, so this study represents the first successful attempt to develop a formulation that incorporates the dimeric flavonoid fraction.


Subject(s)
Flavonoids , Polymers , Brazil , Emulsions/chemistry
10.
Anal Methods ; 15(43): 5837-5845, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37874181

ABSTRACT

Lysergic acid diethylamide (LSD) is a prevalent psychoactive substance recognized for its hallucinogenic properties, often encountered in blotter papers for illicit consumption. Given that LSD ranks among the most widely abused illicit drugs globally, its prompt identification in seized samples is vital for forensic investigations. This study presents, for the first time, an electrochemical screening method for detecting LSD in forensic samples, utilizing a multi-wall carbon nanotube screen-printed electrode (SPE-MWCNT). The LSD detection process was optimized on SPE-MWCNT in a phosphate buffer solution (0.1 mol L-1, pH 12.0) using square wave voltammetry (SWV). The combined use of SPE-MWCNT with SWV displayed robust stability in electrochemical responses for both qualitative (peak potential) and quantitative (peak current) LSD assessment, with a relative standard deviation (RSD) of less than 5% across the same or different electrodes (N = 3). A linear detection range was established between 0.16 and 40.0 µmol L-1 (R2 = 0.998), featuring a low limit of detection (LOD) of 0.05 µmol L-1. Interference studies with twenty-three other substances, including groups of phenethylamines typically found in blotting papers (e.g., NBOHs and NBOMes) and traditional illicit drugs, were performed, revealing a highly selective response for LSD using the proposed method. Consequently, the integration of SPE-MWCNT with SWV offers a robust tool for qualitative and quantitative LSD analysis in forensic applications, providing rapid, sensitive, selective, reproducible, and straightforward preliminary identification in seized samples.


Subject(s)
Illicit Drugs , Nanotubes, Carbon , Substance-Related Disorders , Humans , Lysergic Acid Diethylamide/analysis , Nanotubes, Carbon/chemistry , Electrodes
11.
Biology (Basel) ; 12(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37508328

ABSTRACT

Chagas disease is a severe infectious and parasitic disease caused by the protozoan Trypanosoma cruzi and considered a public health problem. Chemotherapeutics are still the main means of control and treatment of the disease, however with some limitations. As an alternative treatment, plants have been pointed out due to their proven pharmacological properties. Many studies carried out with Terminalia catappa have shown several biological activities, but its effect against T. cruzi is still unknown. The objective of this work is to evaluate the therapeutic potential of extracts and fractions obtained from T. catappa on the parasite T. cruzi, in addition to analyzing its antioxidant activity. T. catappa ethyl acetate fraction were produced and submitted the chemical characterization by Liquid Chromatography Coupled to Mass Spectrometry (LC-MS). From all T. catappa extracts and fractions evaluated, the ethyl acetate and the aqueous fraction displayed the best antioxidant activity by the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging method (IC50 of 7.77 ± 1.61 and 5.26 ± 1.26 µg/mL respectively), and by ferric ion reducing (FRAP) method (687.61 ± 0.26 and 1009.32 ± 0.13 µM of Trolox equivalent/mg extract, respectively). The ethyl acetate fraction showed remarkable T. cruzi inhibitory activity with IC50 of 8.86 ± 1.13, 24.91 ± 1.15 and 85.01 ± 1.21 µg/mL against epimastigotes, trypomastigotes and intracellular amastigotes, respectively, and showed no cytotoxicity for Vero cells (CC50 > 1000 µg/mL). The treatment of epimastigotes with the ethyl acetate fraction led to drastic ultrastructural changes such as the loss of cytoplasm organelles, cell disorganization, nucleus damage and the loss of integrity of the parasite. This effect could be due to secondary compounds present in this extract, such as luteolin, kaempferol, quercetin, ellagic acid and derivatives. The ethyl acetate fraction obtained from T. catappa leaves can be an effective alternative in the treatment and control of Chagas disease, and material for further investigations.

12.
Chem Biodivers ; 20(8): e202300864, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37459186

ABSTRACT

Dizygostemon riparius (Plantaginaceae) is an aromatic herbal species known as "Melosa", endemic to the Municipality of São Benedito do Rio Preto, East Maranhão state, Brazil. It has a refreshing and pleasant aroma and is used for food flavoring and controlling domestic animal parasites. This work aimed to evaluate the seasonal and circadian influence on the composition and production of essential oils (EOs) from D. riparius. The plant aerial parts were hydrodistilled, and the oils were analyzed by GC and GC/MS. The seasonal study was conducted from August 2019 to July 2020, and the circadian study in dry (November) and rainy (May) periods, at 6 am, 12 am, and 6 pm. The results showed that the medium EOs yield was 2.8 %, and the primary constituents (>2 %) were endo-fenchyl acetate (30.5-42.1 %) and endo-fenchol (31.6-37.4 %), (E)-caryophyllene (2.8-7.6 %), α-fenchene (3.3-6.5 %), p-cymene (0.7-4.5 %), and caryophyllene oxide (1.4-2.7 %). Yield and composition of EOs did not significantly correlate with the climatic parameters, but their seasonal percentages influenced their two main components due to precipitation and solar radiation environmental factors. Quantitative variability in the EOs composition during the dry and rainy seasons was observed in the circadian period. These data may be significant for the plant's economic use.


Subject(s)
Oils, Volatile , Plantaginaceae , Animals , Seasons , Brazil
13.
Plants (Basel) ; 12(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37176871

ABSTRACT

New agents that can suppress inflammatory responses are being sought, since chronic inflammation is associated with several pathologies. This work aims to elucidate phytochemicals from the hydroethanolic extract of mistletoe Passovia ovata (POH) and its anti-inflammatory potential. POH is submitted to HPLC-UV, qualitative analysis of chemical constituents, and flavonoid quantification. Cytotoxicity is evaluated in RAW 264.7 macrophages by MTT. LPS-stimulated RAW 264.7 cells are treated with POH and, after 48 h, the nitrite and cytokine levels are quantified. BALB/c mice are treated by gavage with POH and stimulated with λ-carrageenan to induce paw oedema or peritonitis. POH yield is 25% with anthraquinones, tannins, anthocyanins, anthocyanidins, flavonols, catechins and flavanones present and flavonoid content of 4.44 ± 0.157 mg QE/g dry weight. POH exhibits low cytotoxicity and significantly reduced (p < 0.01) nitrite, IL-1ß, IL-6, and TNF-α quantification at 500 µg/mL. POH at 500 mg/kg prevents paw edema increase and also reduces inflammatory infiltrate and mast cells in the footpad. In the peritonitis model, POH does not influence cytokines levels or cell counts. Overall, POH demonstrates a high concentration of flavonoids and prominent effects in the reduction in pro-inflammatory markers in vitro and in the inhibition of paw oedema.

14.
Vet Parasitol ; 319: 109942, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37178553

ABSTRACT

Rhipicephalus (Boophilus) microplus represents a significant obstacle to animal productivity in tropical and subtropical areas, leading to considerable economic losses for the dairy and meat production industries. Essential oils (EO) extracted from Ageratum conyzoides are known to cause death and induce morphogenetic abnormalities in several insect species. This plant, however, presents morphological flower variations, which range from white to purple, associated to different chemotypes. In this context, this study aimed to conduct a novel assessment on the effects of EO extracted from two A. conyzoides chemotypes in the control of the bovine tick R. microplus. The primary constituents of the oil obtained from white flower samples (WFs) were precocene I (80.4 %) and (E)-caryophyllene (14.8 %), while purple flower oil samples (PFs) contained predominantly ß-acoradiene (12.9 %), γ-amorphene (12.3 %), α-pinene (9.9 %), bicyclogermacrene (8.9 %), α-santalene (8.7 %), and andro encecalinol (5.6 %). Interestingly, only the EO chemotype from A. conyzoides PFs displayed acaricidal activity towards R. microplus larvae, with an LC50 of 1.49 mg/mL.


Subject(s)
Acaricides , Ageratum , Coleoptera , Oils, Volatile , Rhipicephalus , Animals , Cattle , Oils, Volatile/pharmacology , Lethal Dose 50 , Larva , Acaricides/pharmacology , Plant Oils/pharmacology
15.
Toxicol Res (Camb) ; 12(2): 321-331, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37125333

ABSTRACT

Brachydin B (BrB) is a unique dimeric flavonoid extracted from Fridericia platyphylla (Cham.) LG Lohmann with different biological activities. However, the antitumoral potential of this flavonoid is unclear. In our study, we evaluated the effects of the BrB flavonoid on cell viability (MTT, resazurin, and lactate dehydrogenase assays), proliferation (protein dosage and clonogenic assay), and migration/invasion (3D ECM gel, wound-healing, and transwell assays) of metastatic prostate (DU145) cells cultured both as traditional 2D monolayers and 3D tumor spheroids in vitro. The results showed that the BrB flavonoid promotes cytotoxic effects from ≥1.50 µM after 24 h of treatment in DU145 cells in monolayers. In 3D prostate tumor spheroids, BrB also induced cytotoxic effects at higher concentrations after longer treatment (48, 72, and 168 h). Furthermore, BrB treatment is associated with reduced DU145 clonogenicity in 2D cultures, as well as decreased area/volume of 3D tumor spheroids. Finally, BrB (6 µM) reduced cell migration/invasion in 2D monolayers and promoted antimigratory effects in DU145 tumor spheroids (≥30 µM). In conclusion, the antitumoral and antimigratory effects observed in DU145 cells cultured in 2D and 3D models are promising results for future studies with BrB using in vivo models and confirm this molecule as a candidate for metastatic prostate cancer therapy.

16.
Metabolites ; 13(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36837904

ABSTRACT

Vernonanthura brasiliana (L.) H. Rob is a medicinal plant used for the treatment of several infections. This study aimed to evaluate the antileishmanial activity of V. brasiliana leaves using in vitro and in silico approaches. The chemical composition of V. brasiliana leaf extract was determined through liquid chromatography-mass spectrometry (LC-MS). The inhibitory activity against Leishmania amazonensis promastigote was evaluated by the MTT method. In silico analysis was performed using Lanosterol 14alpha-demethylase (CYP51) as the target. The toxicity analysis was performed in RAW 264.7 cells and Tenebrio molitor larvae. LC-MS revealed the presence of 14 compounds in V. brasiliana crude extract, including flavonoids, flavones, sesquiterpene lactones, and quinic acids. Eriodictol (ΔGbind = -9.0), luteolin (ΔGbind = -8.7), and apigenin (ΔGbind = -8.6) obtained greater strength of molecular interaction with lanosterol demethylase in the molecular docking study. The hexane fraction of V. brasiliana showed the best leishmanicidal activity against L. amazonensis in vitro (IC50 12.44 ± 0.875 µg·mL-1) and low cytotoxicity in RAW 264.7 cells (CC50 314.89 µg·mL-1, SI = 25.30) and T. molitor larvae. However, the hexane fraction and Amphotericin-B had antagonistic interaction (FICI index ≥ 4.0). This study revealed that V. brasiliana and its metabolites are potential sources of lead compounds for drugs for leishmaniasis treatment.

17.
Toxicol Appl Pharmacol ; 460: 116376, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36638973

ABSTRACT

The demand for the development of three-dimensional (3D) cell culture models in both/either drug screening and/or toxicology is gradually magnified. Natural Products derived from plants are known as phytochemicals and serve as resources for novel drugs and cancer therapy. Typical examples include taxol analogs (i.e., paclitaxel and docetaxel), vinca alkaloids (i.e., vincristine, vinblastine), and camptothecin analogs (topotecan, irinotecan). Breast cancer is the most frequent malignancy in women, with a 70% chance of patients being cured; however, metastatic disease is not considered curable using currently available chemotherapeutic options. In addition, phytochemicals present promising options for overcoming chemotherapy-related problems, such as drug resistance and toxic effects on non-target tissues. In the toxicological evaluation of these natural compounds, 3D cell culture models are a powerful tool for studying their effects on different tissues and organs in similar environments and behave as if they are in vivo conditions. Considering that 3D cell cultures represent a valuable platform for identifying the biological features of tumor cells as well as for screening natural products with antitumoral activity, the present review aims to summarize the most common 3D cell culture methods, focusing on multicellular tumor spheroids (MCTS) of breast cancer cell lines used in the discovery of phytochemicals with anticancer properties in the last ten years.


Subject(s)
Antineoplastic Agents , Biological Products , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Paclitaxel , Spheroids, Cellular/pathology , Cell Culture Techniques, Three Dimensional , Phytochemicals , Biological Products/therapeutic use , Cell Line, Tumor
18.
Acta Trop ; 237: 106699, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36309107

ABSTRACT

Triatoma rubrovaria subcomplex consists of T. carcavalloi, T. circummaculata, T. klugi, T. limai, T. oliveirai, T. pintodiasi, T. rubrovaria, T. patagonica and T. guasayana, which can be vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease. In this study, morphological, morphometric, and genetic characters of T. circummaculata, T. pintodiasi, T. carcavalloi, T. klugi, and T. rubrovaria were analyzed in view of the integrative taxonomy and phylogeny of the T. rubrovaria subcomplex. Molecular studies were carried out through the sequencing and analysis of the mitochondrial genes COI and CytB, nuclear genes ITS I, ITS 2, 16S, and 28S from rDNA and rescued a monophyletic group. Furthermore, differential morphological characters were found among the five species in the pronotum, scutellum, stridulatory sulcus, male genitalia, and external female genitalia. Finally, morphometric analyses made it possible to differentiate the five species. Phylogenetic analyzes rescued the relationship of T. pintodiasi with members of the T. rubrovaria subcomplex and demonstrated that this subcomplex is a monophyletic group composed of the species T. carcavalloi, T. circummaculata, T. klugi, T. guasayana, T. limai, T. oliveirai, T. patagonica, T. pintodiasi, and T. rubrovaria. Furthermore, through integrative taxonomy, it was possible to confirm the specific status of the species T. carcavalloi, T. circummaculata, T. pintodiasi, T. klugi, and T. rubrovaria, offering new useful morphological characters for the differentiation and characterization of these potential vectors and distributed in Southern Brazil.


Subject(s)
Chagas Disease , Triatoma , Triatominae , Animals , Male , Female , Triatoma/genetics , Triatoma/anatomy & histology , Phylogeny , Brazil
19.
Acta Trop ; 237: 106706, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36191628

ABSTRACT

Dengue fever is a reemerging disease of global concern among health authorities due to its high rate of proliferation. In 2019, Brazil registered its second-highest dengue mortality rate since 1998, with approximately 754 deaths and 1.5 million probable cases. Brazilian Ministry of Health prevention and control strategies for Aedes include insecticides, eradication of breeding sites, and awareness campaigns. However, as new mosquito variants resistant to conventional insecticides emerge, there is an increasing demand for effective environment-friendly plant extracts and natural substances against adult mosquitos and/or larvae of Aedes aegypti L. with no negative impacts on human health. This study aimed to investigate the larvicidal activity of Dizygostemon riparius extracts and analyze its chemical profile for the first time. Dizygostemon is a Plantaginaceae bytipic genus and D. riparius is an aromatic plant recently identified in Maranhão, Brazil. The essential oil from its lilac morphotype already exhibited larvicidal potential against Aedes albopictus, but the still limited data on this new plant species require further chemical and biological studies on other species, such as Aedes aegypti. Ethyl acetate and methanol crude leaf extracts yielded, respectively, 17.60 and 25.96%. High-performance liquid chromatography (HPLC) with UV detection coupled with electrospray ionization mass spectrometry (HPLC-UV-ESI-IT/MS) analyses confirmed the presence of polymethoxyflavones and coumarins, such as isorhamnetin 3-galactoside-7-rhamnoside, 5,7-dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-4-benzopyrone and 3',5-dihydroxy-4',6,7-trimethoxyflavone. Ethyl acetate extract presented the best performance in larvicide bioassays (LC50 = 542.2 ± 11.5 µg.mL-1). Our results highlight the chemical and biological potential of this new species found in the cerrado of eastern Maranhão and open perspectives for future studies focusing on isolating and identifying other active secondary metabolites of Dizygostemon riparius.


Subject(s)
Aedes , Insecticides , Plantaginaceae , Animals , Humans , Larva , Insecticides/pharmacology , Insecticides/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Breeding , Plant Leaves
20.
Drug Chem Toxicol ; 46(4): 665-676, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35635136

ABSTRACT

Notwithstanding the advances in molecular target-based drugs, chemotherapy remains the most common cancer treatment, despite its high toxicity. Consequently, effective anticancer therapies with fewer adverse effects are needed. Therefore, this study aimed to determine the anticancer activity of the dichloromethane fraction (DCMF) isolated from Arrabidae brachypoda roots, whose components are three unusual dimeric flavonoids. The toxicity of DCMF was investigated in breast (MCF-7), prostate (DU145), and cervical (HeLa) tumor cells, as well as non-tumor cells (PNT2), using sulforhodamine B (cell viability), Comet (genotoxicity), clonogenicity (reproductive capacity) and wound healing (cell migration) assays, and atomic force microscopy (AFM) for ultrastructural cell membrane alterations. Molecular docking revealed affinity between albumin and each rare flavonoid, supporting the impact of fetal bovine serum in DCMF antitumor activity. The IC50 values for MCF7, HeLa, and DU145 were 2.77, 2.46, and 2.51 µg/mL, respectively, and 4.08 µg/mL for PNT2. DCFM was not genotoxic to tumor or normal cells when exposed to twice the IC50 for up to 24 h, but it inhibited tumor cell migration and reproduction compared to normal cells. Additionally, AFM revealed alterations in the ultrastructure of tumor nuclear membrane surfaces, with a positive correlation between DCMF concentration and tumor cell roughness. Finally, we found a negative correlation between roughness and the ability of DCMF-treated tumor cells to migrate and form colonies with more than 50 cells. These findings suggest that DCFM acts by causing ultrastructural changes in tumor cell membranes while having fewer toxicological effects on normal cells.


Subject(s)
Flavonoids , Neoplasms , Male , Humans , Flavonoids/pharmacology , Flavonoids/chemistry , Molecular Docking Simulation , HeLa Cells , Cell Membrane , Cell Survival , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL