Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Physiol Behav ; 286: 114680, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39187036

ABSTRACT

Pathological nociception arising from peripheral nerve injury impacts quality of life. Current therapeutics are generally ineffective. However, photobiomodulation therapy (PBMT) has shown promise in addressing this issue. We aimed to assess the potential anti-allodynic effects of 2 p.m. protocols, each applied transcutaneously over the peripheral nerve injury. In addition to evaluating nociceptive behavior, we also conducted morphological analysis using electron microscopy (EM) to investigate potential ultrastructural changes at the cellular level. We sought to determine, using the chronic constriction injury (CCI) model, whether our parameters could alleviate established allodynia and/or dampen allodynia development. Adult male and female rats with CCI or sham were treated with PBMT (850-nm wavelength) for 2 min, 3 times a week over three or four weeks across three studies, where PBMT began either before or after CCI. Allodynia was assessed prior to surgery and across weeks and, at the conclusion of the third study, sciatic nerve was processed for EM and histomorphometrically evaluated. The results showed that PBMT before versus after CCI injury yielded similar behaviors, effectively decreasing allodynia. Interestingly, these positive effects of PBMT do not appear to be accounted by protection of the sciatic injury site, based on EM. CCI reliably decreased axon size and the number of myelinated axons present in both PBMT and control groups. While PBMT reduced the number of C-fibers in CCI samples, no improvement in any measure was observed in response to PBMT.

2.
Emerg Infect Dis ; 30(9): 1850-1864, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39173663

ABSTRACT

Plague is a deadly zoonosis that still poses a threat in many regions of the world. We combined epidemiologic, host, and vector surveillance data collected during 1961-1980 from the Araripe Plateau focus in northeastern Brazil with ecologic, geoclimatic, and Yersinia pestis genomic information to elucidate how these factors interplay in plague activity. We identified well-delimited plague hotspots showing elevated plague risk in low-altitude areas near the foothills of the plateau's concave sectors. Those locations exhibited distinct precipitation and vegetation coverage patterns compared with the surrounding areas. We noted a seasonal effect on plague activity, and human cases linearly correlated with precipitation and rodent and flea Y. pestis positivity rates. Genomic characterization of Y. pestis strains revealed a foundational strain capable of evolving into distinct genetic variants, each linked to temporally and spatially constrained plague outbreaks. These data could identify risk areas and improve surveillance in other plague foci within the Caatinga biome.


Subject(s)
Plague , Yersinia pestis , Plague/epidemiology , Plague/microbiology , Brazil/epidemiology , Yersinia pestis/genetics , Humans , Animals , Epidemics , Siphonaptera/microbiology , Genome, Bacterial , Genomics/methods , Seasons
3.
Lasers Med Sci ; 39(1): 222, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39168867

ABSTRACT

Diabetic peripheral neuropathy (DPN) is a primary complication observed in diabetes that severely affects quality of life. Recent evidence suggests that photobiomodulation (PBM) is a promising therapy against painful conditions and nerve damage. However, the effects of PBM on DPN remains mostly unknown. In the present study, we investigated the efficacy of PBM therapy in modulating proinflammatory cytokine expression in both central and peripheral nervous systems of rats with Streptozotocin (STZ)-induced type 1 diabetes. Male Wistar rats were allocated into control (naïve), diabetic (STZ), and treatment (STZ + PBM) groups. A single intraperitoneal (i.p.) injection of STZ (85 mg/kg) was administered for the induction of diabetes. Animals were subjected to 10 treatment sessions, every other day. The results herein presented indicate that PBM treatment diminishes Receptor for Advanced Glycation End-products (RAGE) and Nuclear Factor Kappa B (NF-Ï°B) expression in peripheral nervous system and suppresses TNF-α expression in central nervous system tissues. Furthermore, PBM-therapy in diabetic rats also induces increased levels of the anti-inflammatory protein IL-10 in both peripheral and central nervous system. Collectively, our findings demonstrate compelling evidence that PBM-therapy modulates cytokine dynamics and influences RAGE/NF-Ï°B axis in a STZ-induced model of type 1 diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Low-Level Light Therapy , NF-kappa B , Rats, Wistar , Receptor for Advanced Glycation End Products , Animals , Male , Diabetic Neuropathies/radiotherapy , Diabetic Neuropathies/therapy , Diabetic Neuropathies/metabolism , Low-Level Light Therapy/methods , NF-kappa B/metabolism , Rats , Receptor for Advanced Glycation End Products/metabolism , Diabetes Mellitus, Experimental/radiotherapy , Diabetes Mellitus, Experimental/metabolism , Inflammation/radiotherapy , Inflammation/metabolism , Signal Transduction/radiation effects , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism
4.
Chem Biodivers ; : e202400537, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008435

ABSTRACT

To assess the antibacterial effectiveness of Lippia macrophylla essential oil (LMEO) against multidrug-resistant Acinetobacter baumannii isolates, both as a standalone treatment and in combination with conventional antibiotics. LMEO demonstrated a significant inhibitory effect on the growth of A. baumannii, with a minimum inhibitory concentration (MIC) below 500µg/mL. Notably, LMEO was capable of reversing the antibiotic resistance of clinical isolates or reducing their MIC values when used in combination with antibiotics, showing synergistic (FICI ≤ 0.5) or additive effects. The combination of LMEO and imipenem was particularly effective, displaying synergistic interactions for most isolates. Ultrastructural analyses supported these findings, revealing that the combination of LMEO + ceftazidime compromised the membrane integrity of the Acb35 isolate, leading to cytoplasmic leakage and increased formation of Outer Membrane Vesicles (OMVs). Taken together our results point for the use of LMEO alone or in combination as an antibacterial agent against A. baumannii. These findings offer promising avenues for utilizing LMEO as a novel antibacterial strategy against drug-resistant infections in healthcare settings, underscoring the potential of essential oils in enhancing antibiotic efficacy.

5.
J Neurooncol ; 169(3): 497-506, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39078542

ABSTRACT

PURPOSE: Recent studies have investigated if the sodium fluorescein-guided (SFg) improves the extent of resection of BMs when compared to standard white light (sWL). Therefore, we aimed to assess the comparative efficacy and safety of SFg and sWL for resection of BMs. METHODS: We searched Medline, Embase, and Cochrane Library databases following Cochrane and PRISMA guidelines for studies reporting comparative data of SFg and WL resection of BMs. We pooled odds ratios (OR) with 95% confidence intervals under random effects and applied I² statistics and leave-one-out sensitivity analysis to assess heterogeneity. I² > 40% was considered significant for heterogeneity. RESULTS: Five studies involving 816 patients were included, of whom 390 underwent BMs resection with SFg and 426 with sWL, and ages ranging between 26 and 86.2 years old. Analysis revealed a statistically significant higher likelihood of complete resection in the SFg group when compared to the sWL group (OR = 2.15, 95%CI: 1.18-3.92, p = 0.01; I² = 47%). Sensitivity analysis revealed a consistent result in all five scenarios, with low heterogeneity in two of the five scenarios. Three studies reported significant improvement in OS in the SFg group, and the qualitative assessment of complications and procedure-related mortality did not provide sufficient information for conclusions. CONCLUSION: This systematic review and meta-analysis identified a higher likelihood of complete resection in the SFg group when compared to the standard sWL group. This study is the first to directly compare the impact of SFg and sWL on resection outcomes for BMs.


Subject(s)
Brain Neoplasms , Fluorescein , Humans , Brain Neoplasms/surgery , Brain Neoplasms/secondary , Brain Neoplasms/mortality , Neurosurgical Procedures/methods , Surgery, Computer-Assisted/methods , Light/adverse effects , Treatment Outcome
6.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38886125

ABSTRACT

AIMS: To investigate the genetic profile and characterize antimicrobial resistance, including the main ß-lactam antibiotic resistance genes, in Acinetobacterbaumannii isolates from a tertiary hospital in Recife-PE, Brazil, in the post-COVID-19 pandemic period. METHODS AND RESULTS: Acinetobacter baumannii isolates were collected between 2023 and 2024 from diverse clinical samples. Antimicrobial resistance testing followed standardized protocols, with ß-lactamase-encoding genes detected via PCR and sequencing. Investigation into ISAba1 upstream of blaOXA-carbapenemase and blaADC genes was also conducted. Genetic diversity was assessed through ERIC-PCR. Among the 78 A. baumannii, widespread resistance to multiple antimicrobials was evident. Various acquired ß-lactamase-encoding genes (blaOXA-23,-24,-58,-143, blaVIM, and blaNDM) were detected. Furthermore, this is the first report of blaVIM-2 in A. baumannii isolates harboring either the blaOXA-23-like or the blaOXA-143 gene in Brazil. Molecular typing revealed a high genetic heterogeneity among the isolates, and multi-clonal dissemination. CONCLUSION: The accumulation of genetic resistance determinants underscores the necessity for stringent infection control measures and robust antimicrobial stewardship programs to curb multidrug-resistant strains.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , COVID-19 , Microbial Sensitivity Tests , SARS-CoV-2 , Tertiary Care Centers , beta-Lactamases , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Brazil , Humans , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , SARS-CoV-2/genetics , Drug Resistance, Multiple, Bacterial/genetics , Bacterial Proteins/genetics , Male , Adult , Female , Middle Aged , Drug Resistance, Bacterial/genetics
7.
Ecol Evol ; 14(3): e11094, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476698

ABSTRACT

Pollination is vital for ecosystem functioning, especially in biodiversity-rich regions like the Brazilian Cerrado. Our research establishes a comprehensive meta network of pollinator-plant interactions within this biome. We quantified the importance of different pollinator groups, identifying keystone species. We examined potential biases in sampling effort and the spatial behavior of interactions within the heterogeneous Cerrado plant physiognomies. Our investigation uncovered 1499 interactions among 293 plant species and 386 visitor species, with legitimate pollination accounting for 42.4% of the interactions. The network exhibited modularity, driven by bees and insects, with vertebrates bridging diurnal and nocturnal modules. While a generalized pattern emerged, high specialization existed within modules due to habitat diversity. Bees, particularly Apis mellifera (exotic) and Trigona spinipes (native), played central roles as network hubs. Hummingbirds and bats, engaged in specialized interactions showing strong connectivity within and between modules. Interestingly, invertebrate-vertebrate modules were more prevalent than expected in the meta network. However, a bias was evident, primarily within specific biogeographical districts with fragmented landscapes and intrusion from other biomes. Variations in plant species and endemism rates influenced pollinator occurrence and the Cerrado network topology. Our study offers valuable insights into pollinator-plant interactions within the Cerrado, encompassing both invertebrates and vertebrates. The modeled network represents a significant step in understanding the structural complexity of pollination networks, integrating partial networks from diverse pollination systems within heterogeneous habitats. Nevertheless, a biogeographical bias could limit a comprehensive understanding of network functionality across the Cerrado.

8.
Antonie Van Leeuwenhoek ; 117(1): 61, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520511

ABSTRACT

Yersinia pestis, the causative agent of plague, is a highly virulent bacterium that poses a significant threat to human health. Preserving this bacterium in a viable state is crucial for research and diagnostic purposes. This paper presents and evaluates a simple lyophilization protocol for the long-term storage of Y. pestis strains from Fiocruz-CYP, aiming to explore its impact on viability and long-term stability, while replacing the currently used methodologies. The lyophilization tests were conducted using the non-virulent Y. pestis strain EV76, subjected to the lyophilization process under vacuum conditions. Viability assessment was performed to evaluate the effects of lyophilization and storage conditions on Y. pestis under multiple temperature conditions (- 80 °C, - 20 °C, 4-8 °C and room temperature). The lyophilization protocol employed in this study consistently demonstrated its efficacy in maintaining high viability rates for Y. pestis samples in a up to one year follow-up. The storage temperature that consistently exhibited the highest recovery rates was - 80 °C, followed by - 20 °C and 4-8 °C. Microscopic analysis of the post-lyophilized cultures revealed preserved morphological features, consistent with viable bacteria. The high viability rates observed in the preserved samples indicate the successful preservation of Y. pestis using this protocol. Overall, the presented lyophilization protocol provides a valuable tool for the long-term storage of Y. pestis, offering stability, viability, and functionality. By refining the currently used methods of lyophilization, this protocol can improve long-term preservation for Y. pestis strains collections, facilitating research efforts, diagnostic procedures, and the development of preventive and therapeutic strategies against plague.


Subject(s)
Plague , Yersinia pestis , Humans , Plague/microbiology , Brazil , Freeze Drying , Temperature
9.
Brain Behav Immun ; 115: 419-431, 2024 01.
Article in English | MEDLINE | ID: mdl-37924957

ABSTRACT

Regular aerobic activity is associated with a reduced risk of chronic pain in humans and rodents. Our previous studies in rodents have shown that prior voluntary wheel running can normalize redox signaling at the site of peripheral nerve injury, attenuating subsequent neuropathic pain. However, the full extent of neuroprotection offered by voluntary wheel running after peripheral nerve injury is unknown. Here, we show that six weeks of voluntary wheel running prior to chronic constriction injury (CCI) reduced the terminal complement membrane attack complex (MAC) at the sciatic nerve injury site. This was associated with increased expression of the MAC inhibitor CD59. The levels of upstream complement components (C3) and their inhibitors (CD55, CR1 and CFH) were altered by CCI, but not increased by voluntary wheel running. Since MAC can degrade myelin, which in turn contributes to neuropathic pain, we evaluated myelin integrity at the sciatic nerve injury site. We found that the loss of myelinated fibers and decreased myelin protein which occurs in sedentary rats following CCI was not observed in rats with prior running. Substitution of prior voluntary wheel running with exogenous CD59 also attenuated mechanical allodynia and reduced MAC deposition at the nerve injury site, pointing to CD59 as a critical effector of the neuroprotective and antinociceptive actions of prior voluntary wheel running. This study links attenuation of neuropathic pain by prior voluntary wheel running with inhibition of MAC and preservation of myelin integrity at the sciatic nerve injury site.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Sciatic Neuropathy , Humans , Rats , Animals , Myelin Sheath/metabolism , Complement Membrane Attack Complex , Motor Activity/physiology , Peripheral Nerve Injuries/complications , Hyperalgesia/metabolism , Neuralgia/complications , Sciatic Nerve/injuries
10.
Front Mol Neurosci ; 16: 1225847, 2023.
Article in English | MEDLINE | ID: mdl-37664240

ABSTRACT

A challenge for central nervous system (CNS) tissue analysis in neuroscience research has been the difficulty to codetect and colocalize gene and protein expression in the same tissue. Given the importance of identifying gene expression relative to proteins of interest, for example, cell-type specific markers, we aimed to develop a protocol to optimize their codetection. RNAscope fluorescent in situ hybridization (FISH) combined with immunohistochemistry (IHC) in fixed (CNS) tissue sections allows for reliable quantification of gene transcripts of interest within IHC-labeled cells. This paper describes a new method for simultaneous visualization of FISH and IHC in thicker (14-µm), fixed tissue samples, using spinal cord sections. This method's effectiveness is shown by the cell-type-specific quantification of two genes, namely the proinflammatory cytokine interleukin-1beta (IL-1b) and the inflammasome NLR family pyrin domain containing 3 (NLRP3). These genes are challenging to measure accurately using immunohistochemistry (IHC) due to the nonspecificity of available antibodies and the hard-to-distinguish, dot-like visualizations of the labeled proteins within the tissue. These measurements were carried out in spinal cord sections after unilateral chronic constriction injury of the sciatic nerve to induce neuroinflammation in the spinal cord. RNAscope is used to label transcripts of genes of interest and IHC is used to label cell-type specific antigens (IBA1 for microglia, NeuN for neurons). This combination allowed for labeled RNA transcripts to be quantified within cell-type specific boundaries using confocal microscopy and standard image analysis methods. This method makes it easy to answer empirical questions that are intractable with standard IHC or in situ hybridization alone. The method, which has been optimized for spinal cord tissue and to minimize tissue preparation time and costs, is described in detail from tissue collection to image analysis. Further, the relative expression changes in inflammatory genes NLRP3 and IL-1b in spinal cord microglia vs. neurons of somatotopically relevant laminae are described for the first time.

11.
Biomed Pharmacother ; 165: 115189, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37481932

ABSTRACT

Acinetobacter baumannii is a gram-negative opportunistic bacterium that has become a major public health concern and a substantial medical challenge due to its ability to acquire multidrug resistance (MDR), extended-drug resistance, or pan-drug resistance. In this study, we evaluated the antibacterial activity of thymol and carvacrol alone or in combination against clinical isolates of MDR A. baumannii. Additionally, we used RNA-sequency to perform a comparative transcriptomic analysis of the effects of carvacrol and thymol on the Acb35 strain under different treatment conditions. Our results demonstrated that thymol and carvacrol alone, effectively inhibited the bacterial growth of MDR A. baumannii isolates, with a minimum inhibitory concentration (MIC) lower than 500 µg/mL. Furthermore, the combination of thymol and carvacrol exhibited either synergistic (FICI ≤ 0.5) or additive effects (0.5 < FICI ≤ 4), enhancing their antibacterial activity. Importantly, these compounds were found to be non-cytotoxic to Vero cells and did not cause hemolysis in erythrocytes at concentrations that effectively inhibited bacterial growth. Transcriptomic analysis revealed the down-regulation of mRNA associated with ribosomal subunit assemblies under all experimental conditions tested. However, the up-regulation of specific genes encoding stress response proteins and transcriptional regulators varied depending on the experimental condition, particularly in response to the treatment with carvacrol and thymol in combination. Based on our findings, thymol and carvacrol demonstrate promising potential as chemotherapeutic agents for controlling MDR A. baumannii infections. These compounds exhibit strong antibacterial activity, particularly in combination and lower cytotoxicity towards mammalian cells. The observed effects on gene expression provide insights into the underlying mechanisms of action, highlighting the regulation of stress response pathways.


Subject(s)
Acinetobacter baumannii , Thymol , Animals , Chlorocebus aethiops , Thymol/pharmacology , Acinetobacter baumannii/genetics , Transcriptome , Vero Cells , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Mammals
12.
Indian J Med Res ; 157(4): 293-303, 2023 04.
Article in English | MEDLINE | ID: mdl-37102510

ABSTRACT

Background & objectives: During the COVID-19 pandemic, the death rate was reportedly 5-8 fold lower in India which is densely populated as compared to less populated western countries. The aim of this study was to investigate whether dietary habits were associated with the variations in COVID-19 severity and deaths between western and Indian population at the nutrigenomics level. Methods: In this study nutrigenomics approach was applied. Blood transcriptome of severe COVID-19 patients from three western countries (showing high fatality) and two datasets from Indian patients were used. Gene set enrichment analyses were performed for pathways, metabolites, nutrients, etc., and compared for western and Indian samples to identify the food- and nutrient-related factors, which may be associated with COVID-19 severity. Data on the daily consumption of twelve key food components across four countries were collected and a correlation between nutrigenomics analyses and per capita daily dietary intake was investigated. Results: Distinct dietary habits of Indians were observed, which may be associated with low death rate from COVID-19. Increased consumption of red meat, dairy products and processed foods by western populations may increase the severity and death rate by activating cytokine storm-related pathways, intussusceptive angiogenesis, hypercapnia and enhancing blood glucose levels due to high contents of sphingolipids, palmitic acid and byproducts such as CO2 and lipopolysaccharide (LPS). Palmitic acid also induces ACE2 expression and increases the infection rate. Coffee and alcohol that are highly consumed in western countries may increase the severity and death rates from COVID-19 by deregulating blood iron, zinc and triglyceride levels. The components of Indian diets maintain high iron and zinc concentrations in blood and rich fibre in their foods may prevent CO2 and LPS-mediated COVID-19 severity. Regular consumption of tea by Indians maintains high high-density lipoprotein (HDL) and low triglyceride in blood as catechins in tea act as natural atorvastatin. Importantly, regular consumption of turmeric in daily food by Indians maintains strong immunity and curcumin in turmeric may prevent pathways and mechanisms associated with SARS-CoV-2 infection and COVID-19 severity and lowered the death rate. Interpretation & conclusions: Our results suggest that Indian food components suppress cytokine storm and various other severity related pathways of COVID-19 and may have a role in lowering severity and death rates from COVID-19 in India as compared to western populations. However, large multi-centered case-control studies are required to support our current findings.


Subject(s)
COVID-19 , Food Ingredients , Humans , Nutrigenomics , Carbon Dioxide , Lipopolysaccharides , Pandemics , Cytokine Release Syndrome , Palmitic Acid , SARS-CoV-2 , Diet/methods , Feeding Behavior , Zinc , Tea , Iron , Triglycerides
13.
Appl Microbiol Biotechnol ; 107(7-8): 2653-2660, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36897342

ABSTRACT

We developed a simple new selective LB-based medium, named CYP broth, suitable for recovering long-term stored Y. pestis subcultures and for isolation of Y. pestis strains from field-caught samples for the Plague surveillance. It aimed to inhibit the growth contaminating microorganisms and enrich Y. pestis growth through iron supplementation. The performance of CYP broth on microbial growth from different gram-negative and gram-positive strains from American Type Culture Collection (ATCC®) and other clinical isolates, field-caught rodent samples, and more importantly, on several vials of ancient Y. pestis subcultures was evaluated. Additionally, other pathogenic Yersinia species such as Y. pseudotuberculosis and Y. enterocolitica were also successfully isolated with CYP broth. Selectivity tests and bacterial growth performance on CYP broth (LB broth supplemented with Cefsulodine, Irgasan, Novobiocin, nystatin and ferrioxamine E) were evaluated in comparison with LB broth without additive; LB broth/CIN, LB broth/nystatin and with traditional agar media including LB agar without additive, and LB agar and Cefsulodin-Irgasan-Novobiocin Agar (CIN agar) supplemented with 50 µg/mL of nystatin. Of note, the CYP broth had a recovery twofold higher than those of the CIN supplemented media or other regular media. Additionally, selectivity tests and bacterial growth performance were also evaluated on CYP broth in the absence of ferrioxamine E. The cultures were incubated at 28 °C and visually inspected for microbiological growth analysis and O.D.625 nm measurement between 0 and 120 h. The presence and purity of Y. pestis growth were confirmed by bacteriophage and multiplex PCR tests. Altogether, CYP broth provides an enhanced growth of Y. pestis at 28 °C, while inhibiting contaminant microorganisms. The media is a simple, but powerful tool to improve the reactivation and decontamination of ancient Y. pestis culture collections and for the isolation of Y. pestis strains for the Plague surveillance from various backgrounds. KEY POINTS: • The newly described CYP broth improves the recuperation of ancient/contaminated Yersinia pestis culture collections • CYP broth was also efficient in reducing environmental contamination in field-capture samples, improving Y. pestis isolation • CYP broth can also be used for the isolation of Y. enterocolitica and Y. pseudotuberculosis.


Subject(s)
Plague , Yersinia pestis , Humans , Agar , Plague/microbiology , Novobiocin/pharmacology , Nystatin , Culture Media/pharmacology , Cefsulodin/pharmacology
14.
Acta Trop ; 231: 106427, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35339434

ABSTRACT

Plague is a flea-borne zoonosis that affects a wide range of mammals and still causes outbreaks in human populations yearly across several countries. While crucial for proper treatment, early diagnosis is still a major challenge in low- and middle-income countries due to poor access to laboratory infrastructure in rural areas. To tackle this issue, we developed and evaluated a new Fraction 1 capsular antigen (F1)-based rapid diagnostic test (RDT) as an alternative method for plague serological diagnosis and surveillance in humans and other mammals. In this study, 187 serum samples from humans, dogs, rodents and rabbits were retrospectively assessed using the plague RDT method. To calculate its performance, results were compared to those obtained by traditional hemagglutination (HA) and ELISA, which are well-established methods in the plague routine serodiagnosis. Remarkably, the results from RDT were in full agreement with those from the ELISA and HA assays, resulting in 100% (CI 95% = 95.5-100%) of sensitivity and 100% (CI 95% = 96.6-100%) of specificity. Accordingly, the Cohen's Kappa test coefficient was 1.0 (almost perfect agreement). Moreover, the RDT showed no cross-reaction when tested with sera from individuals positive to other pathogens, such as Y. pseudotuberculosis, Yersinia enterocolitica, Anaplasma platys, Ehrlichia canis and Leishmania infantum. Although preliminary, this study brings consistent proof-of-concept results with high performance of the Plague RDT when compared to HA and ELISA. Although further human and animal population-based studies will be necessary to validate these findings, the data presented here show that the plague RDT is highly sensitive and specific, polyvalent to several mammal species and simple to use in field surveillance or point-of-care situations with instant results.


Subject(s)
Plague , Yersinia pestis , Animals , Diagnostic Tests, Routine , Dogs , Humans , Mammals , Plague/diagnosis , Plague/epidemiology , Plague/veterinary , Rabbits , Retrospective Studies
15.
PLoS One ; 16(10): e0258066, 2021.
Article in English | MEDLINE | ID: mdl-34673777

ABSTRACT

Insectivorous bats provide ecosystem services in agricultural and urban landscapes by consuming arthropods that are considered pests. Bat species inhabiting cities are expected to consume insects associated with urban areas, such as mosquitoes, flying termites, moths, and beetles. We captured insectivorous bats in the Federal District of Brazil and used fecal DNA metabarcoding to investigate the arthropod consumed by five bat species living in colonies in city buildings, and ascertained whether their predation was related to ecosystem services. These insectivorous bat species were found to consume 83 morphospecies of arthropods and among these 41 were identified to species, most of which were agricultural pests. We propose that bats may roost in the city areas and forage in the nearby agricultural fields using their ability to fly over long distances. We also calculated the value of the pest suppression ecosystem service by the bats. By a conservative estimation, bats save US$ 94 per hectare of cornfields, accounting for an annual savings of US$ 390.6 million per harvest in Brazil. Our study confirms that, regardless of their roosting location, bats are essential for providing ecosystem services in the cities, with extensive impacts on crops and elsewhere, in addition to significant savings in the use of pesticides.


Subject(s)
Chiroptera , Insecta , Pest Control, Biological , Animals , Brazil , Cities , Predatory Behavior
16.
Rev. epidemiol. controle infecç ; 11(2): [1-13], abr.-jun. 2021. ilus
Article in English | LILACS | ID: biblio-1362763

ABSTRACT

Justification and Objectives: Circulating blood is sterile and the presence of microorganisms can be of clinical interest, especially in the hospital environment, being able to cause infectious processes and substantially increase morbidity and mortality. The objective of this work was to characterize the isolates of the genus Staphylococcus spp. from bloodstream infections as to the production of bacterial biofilm and resistance to the main antimicrobials used in clinical practice. Methods: Blood cultures were collected with an indication of positivity for bacterial growth from multiple sectors of the study hospital, which were subsequently processed to identify the bacterial genus through the use of phenotypic tests for Gram positive bacteria. The verification of the resistance profile was performed following the Kirby-Bauer disk diffusion. The identification of the production and quantification of the bacterial biofilm occurred following the protocol described by O'toole (2010). Results: The most frequent clinical isolate was Coagulase negative Staphylococci 38 (54.29%), followed by Staphylococcus aureus 32 (45.71%). Resistance to erythromycin, norfloxacin, levofloxacin and azithromycin was observed in most isolates (70%). Regarding methicillin, more MRSA (59.38%) than MR-CONS (47.37%) were isolated. The ICU was the place where the formation of the biofilm showed indicative data of greater adherence, which was associated with MRSA strains. Conclusion: The bacterial isolates associated with bloodstream infections showed high resistance to antimicrobials. The presence of MRSA and MR-CONS with strong and/or moderate biofilm production capacity represents a greater risk to the health of patients affected by infections caused by these agents.(AU)


Justificativa e Objetivos: O sangue circulante é estéril e a presença de microrganismos pode ter interesse clínico, especialmente no ambiente hospitalar, sendo capaz de causar processos infecciosos e aumentar substancialmente a morbimortalidade. O objetivo deste trabalho foi caracterizar os isolados do gênero Staphylococcus spp. oriundos de infecções de corrente sanguínea quanto à produção de biofilme bacteriano e resistência aos principais antimicrobianos utilizados na prática clínica. Métodos: Foram coletadas hemoculturas com indicação de positividade para o crescimento bacteriano de múltiplos setores do hospital de estudo, as quais posteriormente foram processadas para identificação do gênero bacteriano através da utilização de testes fenotípicos para bactérias Gram positivas. A verificação do perfil de resistência foi realizada seguindo a metodologia de disco difusão de Kirby-Bauer. A identificação da produção e quantificação do biofilme bacteriano ocorreu seguindo o protocolo descrito por O'toole (2010). Resultados: O isolado clínico mais frequente foi o Staphylococcus coagulase negativo 38 (54,29%), seguido pelo Staphylococcus aureus 32 (45,71%). A resistência à eritromicina, norfloxacina, levofloxacina e azitromicina foi observada na maioria dos isolados (70%). Em relação à meticilina, foram isolados mais Staphylococcus aureus resistente à meticilina (MRSA) (59,38%) que Staphylococcus coagulase negativa resistente à meticilina (MR-CONS) (47,37%). A UTI foi o local onde a formação do biofilme apresentou dados indicativos de maior aderência, sendo essa associada às cepas MRSA. Conclusão: Os isolados bacterianos associados às infecções da corrente sanguínea apresentaram elevada resistência aos antimicrobianos. A presença de MRSA e MR-CONS com forte e/ou moderada capacidade de produção de biofilme representa maior risco à saúde dos pacientes acometidos por infecções causadas por estes agentes.(AU)


Justificación y objetivos: la sangre circulante es estéril y la presencia de microorganismos puede ser de interés clínico, especialmente en el entorno hospitalario, ya que puede causar procesos infecciosos y aumentar sustancialmente la morbilidad y la mortalidad. El objetivo de este trabajo fue caracterizar los aislamientos del género Staphylococcus spp. de infecciones del torrente sanguíneo en cuanto a la producción de biopelículas bacterianas y la resistencia a los principales antimicrobianos utilizados en la práctica clínica. Métodos: Se recogieron hemocultivos con una indicación de positividad para el crecimiento bacteriano de múltiples sectores del hospital de estudio, que posteriormente se procesaron para identificar el género bacteriano mediante el uso de pruebas fenotípicas para bacterias Gram positivas. La verificación del perfil de resistencia se realizó siguiendo la metodología de difusión de disco de Kirby-Bauer. La identificación de la producción y cuantificación de la biopelícula bacteriana se produjo siguiendo el protocolo descrito por O'toole (2010). Resultados: El aislado clínico más frecuente fue Staphylococcus coagulasa negativo 38 (54.29%), seguido de Staphylococcus aureus 32 (45.71%). Se observó resistencia a la eritromicina, norfloxacina, levofloxacina y azitromicina en la mayoría de los aislamientos (70%). Con respecto a la meticilina, se aislaron más MRSA (59,38%) que MR-CONS (47,37%). La UCI fue el lugar donde la formación de la biopelícula mostró datos indicativos de una mayor adherencia, que se asoció con las cepas de MRSA. Conclusión: los aislamientos bacterianos asociados con infecciones del torrente sanguíneo mostraron una alta resistencia a los antimicrobianos. La presencia de MRSA y MR-CONS con una capacidad de producción de biopelículas fuerte y / o moderada representa un mayor riesgo para la salud de los pacientes afectados por infecciones causadas por estos agentes.(AU)


Subject(s)
Staphylococcus , Drug Resistance, Microbial , Biofilms , Blood Culture , Anti-Infective Agents , Cross Infection
17.
Photochem Photobiol Sci ; 20(6): 781-790, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34053000

ABSTRACT

Anterior Cingulate Cortex (ACC) has a crucial contribution to higher order pain processing. Photobiomodulation (PBM) has being used as integrative medicine for pain treatment and for a variety of nervous system disorders. This study evaluated the effects of PBM in the ACC of diabetic rats. Type 1 diabetes was induced by a single dose of streptozotocin (85 mg/Kg). A total of ten sessions of PBM (pulsed gallium-arsenide laser, 904 nm, 9500 Hz, 6.23 J/cm2) was applied to the rat peripheral nervous system. Glial fibrillary acidic protein (GFAP), mu-opioid receptor (MOR), glutamate receptor 1 (GluR1), and glutamic acid decarboxylase (GAD65/67) protein level expression were analyzed in the ACC of diabetic rats treated with PBM. Our data revealed that PBM decreased 79.5% of GFAP protein levels in the ACC of STZ rats. Moreover, STZ + PBM rats had protein levels of MOR increased 14.7% in the ACC. Interestingly, STZ + PBM rats had a decrease in 70.7% of GluR1 protein level in the ACC. Additionally, PBM decreased 45.5% of GAD65/67 protein levels in the ACC of STZ rats.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Gyrus Cinguli/metabolism , Lasers , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Type 1/chemically induced , Disease Models, Animal , Photochemical Processes , Rats , Streptozocin
18.
Photochem Photobiol Sci ; 20(2): 293-301, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33721255

ABSTRACT

There is no effective treatment to halt peripheral nervous system damage in diabetic peripheral neuropathy. Mitochondria have been at the center of discussions as important factors in the development of neuropathy in diabetes. Photobiomodulation has been gaining clinical acceptance as it shows beneficial effects on a variety of nervous system disorders. In this study, the effects of photobiomodulation (904 nm, 45 mW, 6.23 J/cm2, 0.13 cm2, 60 ns pulsed time) on mitochondrial dynamics were evaluated in an adult male rat experimental model of streptozotocin-induced type 1 diabetes. Results presented here indicate that photobiomodulation could have an important role in preventing or reversing mitochondrial dynamics dysfunction in the course of peripheral nervous system damage in diabetic peripheral neuropathy. Photobiomodulation showed its effects on modulating the protein expression of mitofusin 2 and dynamin-related protein 1 in the sciatic nerve and in the dorsal root ganglia neurons of streptozotocin-induced type 1 diabetes in rats.


Subject(s)
Ganglia, Spinal/radiation effects , Lasers, Semiconductor , Mitochondrial Dynamics/radiation effects , Sciatic Nerve/radiation effects , Animals , Blood Glucose/analysis , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Ganglia, Spinal/metabolism , Male , Rats , Rats, Wistar , Sciatic Nerve/metabolism , Streptozocin/toxicity
19.
Front Med Technol ; 3: 670274, 2021.
Article in English | MEDLINE | ID: mdl-35047926

ABSTRACT

Electrical stimulation (ES) is a well-known method for guiding the behaviour of nerve cells in in vitro systems based on the response of these cells to an electric field. From this perspective, understanding how the electrochemical stimulus can be tuned for the design of a desired cell response is of great importance. Most biomedical studies propose the application of an electrical potential to cell culture arrays while examining the cell response regarding viability, morphology, and gene expression. Conversely, various studies failed to evaluate how the fine physicochemical properties of the materials used for cell culture influence the observed behaviours. Among the various materials used for culturing cells under ES, conductive polymers (CPs) are widely used either in pristine form or in addition to other polymers. CPs themselves do not possess the optimal surface for cell compatibility because of their hydrophobic nature, which leads to poor protein adhesion and, hence, poor bioactivity. Therefore, understanding how to tailor the chemical properties on the material surface will determine the obtention of improved ES platforms. Moreover, the structure of the material, either in a thin film or in porous electrospun scaffolds, also affects the biochemical response and needs to be considered. In this review, we examine how materials based on CPs influence cell behaviour under ES, and we compile the various ES setups and physicochemical properties that affect cell behaviour. This review concerns the culture of various cell types, such as neurons, fibroblasts, osteoblasts, and Schwann cells, and it also covers studies on stem cells prone to ES. To understand the mechanistic behaviour of these devices, we also examine studies presenting a more detailed biomolecular level of interaction. This review aims to guide the design of future ES setups regarding the influence of material properties and electrochemical conditions on the behaviour of in vitro cell studies.

20.
Infect Genet Evol ; 85: 104584, 2020 11.
Article in English | MEDLINE | ID: mdl-33022426

ABSTRACT

OBJECTIVE: To describe the molecular mechanisms of polymyxins resistance in five Enterobacteriaceae clinical isolates from a tertiary hospital of Recife, Brazil. METHODS: The species identification and the susceptibility to antimicrobials were firstly performed by automatized methods and polymyxin resistance was confirmed by broth microdilution methods. The genetic basis of resistance was characterized with WGS analyses to study their resistome, plasmidome and mobilome, by BLAST searches on reference databases. RESULTS: Five (5%) Enterobacteriaceae isolates, comprising Escherichia coli (n = 2), Klebsiella pneumoniae (n = 2) and Citrobacter freundii (n = 1) species, exhibited polymyxin resistance. The mcr-1.1 gene was found in identical IncX4-plasmids harbored by both K. pneumoniae C119 (PolB MIC = 512 mg/L) and E. coli C153 (PolB MIC = 8 mg/L). The remaining E. coli strain C027 harbored the mcr-5.1 gene on an undefined Inc-plasmid (PolB MIC 256 mg/L). Some amino acid substitutions in PmrA (S29G, G144S), PmrB (S202P; D283G, W350*, Y258N) and PhoP (I44L) was detected among the E. coli clinical isolates, however they were also found in colistin-susceptible strains and predicted as neutral alterations. The mgrB of the ST54 KPC-2-producing K. pneumoniae C151 (PolB MIC = 32 g/mL) was interrupted at 69 nt by the IS903 element. The ST117 C. freundii C156 (PolB MIC = 256 mg/L) showed the A91T substitution on HAMP domain of the histidine kinase sensor CrrB, predicted as deleterious and deemed the remarkable determinant to polymyxins resistance in this strain. CONCLUSIONS: Diverse mechanisms of polymyxins resistance were identified among clinical Enterobacteriaceae from a tertiary hospital of Recife, Brazil, such as plasmid-mediated MCR-1 and MCR-5; IS903-interruption of mgrB and mutation in CrrAB regulatory system. These findings highlight the involvement of the identified plasmids on mcr dissemination among Enterobacteriaceae; warn about co-selection of the polymyxin-resistant and KPC-producer K. pneumoniae ΔmgrB lineage by carbapenems usage; and demonstrate potential role of CrrAB on emerging of polymyxin resistance among Enterobacteriaceae, besides Klebsiella species.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Polymyxins/pharmacology , Anti-Bacterial Agents/therapeutic use , Brazil/epidemiology , Enterobacteriaceae/isolation & purification , Enterobacteriaceae Infections/drug therapy , Genes, Bacterial , Microbial Sensitivity Tests , Plasmids/genetics , Polymyxins/therapeutic use , Tertiary Care Centers
SELECTION OF CITATIONS
SEARCH DETAIL