Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Biol Int ; 48(9): 1354-1363, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38894528

ABSTRACT

Ecto-5'-nucleotidase (CD73) hydrolyses 5'AMP to adenosine and inorganic phosphate. Breast cancer cells (MDA-MB-231) express high CD73 levels, and this enzyme has been found to play a tumour-promoting role in breast cancer. However, no studies have sought to investigate whether CD73 has differential affinity or substrate preferences between noncancerous and cancerous breast cells. In the present study, we aimed to biochemically characterise ecto-5'-nucleotidase in breast cancer cell lines and assess whether its catalytic function and tumour progression are correlated in breast cancer cells. The results showed that compared to nontumoral breast MCF-10A cells, triple-negative breast cancer MDA-MB-231 cells had a higher ecto-5'-nucleotidase expression level and enzymatic activity. Although ecto-5'-nucleotidase activity in the MDA-MB-231 cell line showed no selectivity among monophosphorylated substrates, 5'AMP was preferred by the MCF-10A cell line. Compared to the MCF-10A cell line, the MDA-MB-231 cell line has better hydrolytic ability, lower substrate affinity, and high inhibitory potential after treatment with a specific CD73 inhibitor α,ß­methylene ADP (APCP). Therefore, we demonstrated that a specific inhibitor of the ecto-5-nucleotidase significantly reduced the migratory and invasive capacity of MDA-MB-231 cells, suggesting that ecto-5-nucleotidase activity might play an important role in metastatic progression.


Subject(s)
5'-Nucleotidase , Triple Negative Breast Neoplasms , Humans , 5'-Nucleotidase/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Female , GPI-Linked Proteins/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Movement , Adenosine/metabolism , Adenosine/analogs & derivatives
2.
Int J Mol Sci ; 22(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34576256

ABSTRACT

According to the growth rate hypothesis (GRH), tumour cells have high inorganic phosphate (Pi) demands due to accelerated proliferation. Compared to healthy individuals, cancer patients present with a nearly 2.5-fold higher Pi serum concentration. In this work, we show that an increasing concentration of Pi had the opposite effect on Pi-transporters only in MDA-MB-231 when compared to other breast cell lines: MCF-7 or MCF10-A (non-tumoural breast cell line). Here, we show for the first time that high extracellular Pi concentration mediates ROS production in TNBC (MDA-MB-231). After a short-time exposure (1 h), Pi hyperpolarizes the mitochondrial membrane, increases mitochondrial ROS generation, impairs oxygen (O2) consumption and increases PKC activity. However, after 24 h Pi-exposure, the source of H2O2 seems to shift from mitochondria to an NADPH oxidase enzyme (NOX), through activation of PKC by H2O2. Exogenous-added H2O2 modulated Pi-transporters the same way as extracellular high Pi, which could be reversed by the addition of the antioxidant N-acetylcysteine (NAC). NAC was also able to abolish Pi-induced Epithelial-mesenchymal transition (EMT), migration and adhesion of MDA-MB-231. We believe that Pi transporters support part of the energy required for the metastatic processes stimulated by Pi and trigger Pi-induced H2O2 production as a signalling response to promote cell migration and adhesion.


Subject(s)
Breast Neoplasms/drug therapy , Hydrogen Peroxide/chemistry , Phosphates , Acetylcysteine/pharmacology , Cell Adhesion , Cell Line, Tumor , Cell Movement , Cell Survival , Epithelial-Mesenchymal Transition , Female , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial , NADPH Oxidases/metabolism , Neoplasm Metastasis , Oxygen Consumption , Protein Kinase C/metabolism , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL