Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38562708

ABSTRACT

Background: In the earliest days of COVID-19 pandemic, the collection of dried blood spots (DBS) enabled public health laboratories to undertake population-scale seroprevalence studies to estimate rates of SARS-CoV-2 exposure. With SARS-CoV-2 seropositivity levels now estimated to exceed 94% in the United States, attention has turned to using DBS to assess functional (neutralizing) antibodies within cohorts of interest. Methods: Contrived DBS eluates from convalescent, fully vaccinated and pre-COVID-19 serum samples were evaluated in SARS-CoV-2 plaque reduction neutralization titer (PRNT) assays, a SARS-CoV-2 specific 8-plex microsphere immunoassay, a cell-based pseudovirus assay, and two different spike-ACE2 inhibition assays, an in-house Luminex-based RBD-ACE2 inhibition assay and a commercial real-time PCR-based inhibition assay (NAB-Sure™). Results: DBS eluates from convalescent individuals were compatible with the spike-ACE2 inhibition assays, but not cell-based pseudovirus assays or PRNT. However, the insensitivity of cell-based pseudovirus assays was overcome with DBS eluates from vaccinated individuals with high SARS-CoV-2 antibody titers. Conclusion: SARS-CoV-2 neutralizing titers can be derived with confidence from DBS eluates, thereby opening the door to the use of these biospecimens for the analysis of vulnerable populations and normally hard to reach communities.

2.
Microbiol Spectr ; 11(1): e0133622, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36622204

ABSTRACT

Serosurveys can determine the extent and spread of a pathogen in populations. However, collection of venous blood requires trained medical staff. Dried blood spots (DBS) are a suitable alternative because they can be self-collected and stored/shipped at room temperature. As COVID-19 vaccine deployment began in early 2021, we rapidly enrolled laboratory employees in a study to evaluate IgG antibody levels following vaccination. Participants received a DBS collection kit, self-collection instructions, and a brief questionnaire. Three DBS were collected by each of 168 participants pre- and/or postvaccination and tested with a multiplex microsphere immunoassay (MIA) that separately measures IgG antibodies to SARS-CoV-2 spike-S1 and nucleocapsid antigens. Most DBS (99.6%, 507/509) were suitable for testing. Participants with prior SARS-CoV-2 infection (n = 7) generated high S antibody levels after the first vaccine dose. Naïve individuals (n = 161) attained high S antibody levels after the second dose. Similar antibody levels were seen among those vaccinated with Moderna (n = 29) and Pfizer-BioNTech (n = 137). For those receiving either mRNA vaccine, local side effects were more common after the first vaccine dose, whereas systemic side effects were more common after the second dose. Individuals with the highest antibody levels in the week prior to the second vaccine dose experienced more side effects from the second dose. Our study demonstrated that combining self-collected DBS and a multiplex MIA is a convenient and effective way to assess antibody levels to vaccination and could easily be used for population serosurveys of SARS-CoV-2 or other emerging pathogens. IMPORTANCE Serosurveys are an essential tool for assessing immunity in a population (1, 2). However, common barriers to effective serosurveys, particularly during a pandemic, include high-costs, resources required to collect venous blood samples, lack of trained laboratory technicians, and time required to perform the assay. By utilizing self-collected dried blood spots (DBS) and our previously developed high-throughput microsphere immunoassay, we were able to significantly reduce many of these common challenges. Participants were asked to self-collect three DBS before and/or after they received their COVID-19 vaccines to measure antibody levels following vaccination. Participants successfully collected 507 DBS that were tested for IgG antibodies to the spike and nucleocapsid proteins of SARS-CoV-2. When used with self-collected DBS, our relatively low-cost assay significantly reduced common barriers to collecting serological data from a population and was able to effectively assess antibody response to vaccination.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Humans , COVID-19 Vaccines , Immunoglobulin G , Antibody Formation , COVID-19/diagnosis , COVID-19/prevention & control , Microspheres , SARS-CoV-2 , Immunoassay , Antibodies, Viral
3.
JAMA Netw Open ; 5(8): e2227995, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35994287

ABSTRACT

Importance: Serosurveys can be used to monitor population-level dynamics of COVID-19 and vaccination. Dried blood spots (DBSs) collected from infants contain maternal IgG antibodies and are useful for serosurveys of individuals recently giving birth. Objectives: To examine SARS-CoV-2 antibody prevalence in pregnant individuals in New York State, identify associations between SARS-CoV-2 antibody status and maternal and infant characteristics, and detect COVID-19 vaccination among this population. Design, Setting, and Participants: A population-based, repeated cross-sectional study was conducted to detect SARS-CoV-2 nucleocapsid (N) and spike (S) IgG antibodies. Deidentified DBS samples and data submitted to the New York State Newborn Screening Program between November 1, 2019, and November 30, 2021, were analyzed. Exposures: Prenatal exposure to SARS-CoV-2 antibodies. Main Outcomes and Measures: The presence of IgG antibodies to SARS-CoV-2 N and S antigens was measured using a microsphere immunoassay. Data were analyzed by geographic region and compared with reported COVID-19 cases and vaccinations among reproductive-aged females (15-44 years of age). Data were stratified by infant birth weight, gestational age, maternal age, and multiple birth status. Results: Dried blood spot samples from 415 293 infants (median [IQR] age, 1.04 [1.00-1.20] days; 210 805 [51.1%] male) were analyzed for SARS-CoV-2 antibodies. The first known antibody-positive infant in New York State was born on March 29, 2020. SARS-CoV-2 seroprevalence reflected statewide and regional COVID-19 cases among reproductive-aged females in the prevaccine period. From February through November 2021, S seroprevalence was strongly correlated with cumulative vaccinations in each New York State region and in the state overall (rs = 0.92-1.00, P ≤ .001). S and N seroprevalences were significantly lower in newborns with very low birth weight (720 [14.8%] for S and 138 [2.8%] for N, P < .001) and low birth weight (5160 [19.3%] for S and 1233 [4.6%] for N, P = .009) compared with newborns with normal birth weight (77 116 [20.1%] for S and 19 872 [5.2%] for N). Lower N and higher S seroprevalences were observed in multiple births (odds ratio [OR], 0.84; 95% CI, 0.75-0.94; P = .002 for N and OR, 1.24; 95% CI, 1.18-1.31; P < .001 for S) vs single births and for maternal age older than 30 years (OR, 0.87; 95% CI, 0.80-0.94; P < .001 for N and OR, 1.17; 95% CI, 1.11-1.23; P < .001 for S) vs younger than 20 years. Conclusions and Relevance: In this study, seroprevalence in newborn DBS samples reflected COVID-19 case fluctuations and vaccinations among reproductive-aged women during the study period. These results demonstrate the utility of using newborn DBS testing to estimate SARS-CoV-2 seroprevalence in pregnant individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , Birth Weight , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Vaccines , Cross-Sectional Studies , Female , Humans , Immunoglobulin G , Infant , Infant, Newborn , Male , New York/epidemiology , Parturition , Pregnancy , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...