ABSTRACT
Several types of sensory perception have circadian rhythms. The spinal cord can be considered a center for controlling circadian rhythms by changing clock gene expression. However, to date, it is not known if mechanonociception itself has a circadian rhythm. The hypothalamic A11 area represents the primary source of dopamine (DA) in the spinal cord and has been found to be involved in clock gene expression and circadian rhythmicity. Here, we investigate if the paw withdrawal threshold (PWT) has a circadian rhythm, as well as the role of the dopaminergic A11 nucleus, DA, and DA receptors (DR) in the PWT circadian rhythm and if they modify clock gene expression in the lumbar spinal cord. Naïve rats showed a circadian rhythm of the PWT of almost 24 h, beginning during the night-day interphase and peaking at 14.63 h. Similarly, DA and DOPAC's spinal contents increased at dusk and reached their maximum contents at noon. The injection of 6-hydroxydopamine (6-OHDA) into the A11 nucleus completely abolished the circadian rhythm of the PWT, reduced DA tissue content in the lumbar spinal cord, and induced tactile allodynia. Likewise, the repeated intrathecal administration of D1-like and D2-like DA receptor antagonists blunted the circadian rhythm of PWT. 6-OHDA reduced the expression of Clock and Per1 and increased Per2 gene expression during the day. In contrast, 6-OHDA diminished Clock, Bmal, Per1, Per2, Per3, Cry1, and Cry2 at night. The repeated intrathecal administration of the D1-like antagonist (SCH-23390) reduced clock genes throughout the day (Clock and Per2) and throughout the night (Clock, Per2 and Cry1), whereas it increased Bmal and Per1 throughout the day. In contrast, the intrathecal injection of the D2 receptor antagonists (L-741,626) increased the clock genes Bmal, Per2, and Per3 and decreased Per1 throughout the day. This study provides evidence that the circadian rhythm of the PWT results from the descending dopaminergic modulation of spinal clock genes induced by the differential activation of spinal DR.
ABSTRACT
The freshwater crayfish Procambarus clarkii is an animal model employed for physiological and immunological studies and is also of great economic importance in aquaculture. Although it is a species of easy husbandry, a high percentage of its production is lost annually as a result of infectious diseases. Currently, genetic information about the immune system of crustaceans is limited. Therefore, we used the abdominal nerve cord from P. clarkii to obtain its transcriptome using Next Generation Sequencing (NGS) to identify proteins that participate in the immune system. The reads were assembled de novo and consensus sequences with more than 3000 nucleotides were selected for analysis. The transcripts of the sequences of RNA were edited for annotation and sent to the GenBank database of the National Center for Biotechnology Information (NCBI). We made a list of accession numbers of the sequences which were organized by the putative role of the immune system pathway in which they participate. In this work, we report on 80 proteins identified from the transcriptome of crayfish related to the immune system, 74 of them being the first reported for P. clarkii. We hope that the knowledge of these sequences will contribute significantly to the development of future studies of the immune system in crustaceans.
ABSTRACT
The purpose of this paper is to explore the firing rate of the caudal photoreceptors (CPRs) from the sixth abdominal ganglion of the crayfish Cherax quadricarinatus. We use simultaneous extracellular recordings on left and right CPR in the isolated ganglion (n = 10). The CPRs showed an asymmetry in the spontaneous activity and light-induced response. In darkness, we observed one subgroup (70%) in which the left CPR (CPR-L) and right CPR (CPR-R) had spontaneous firing rates with a median of 18 impulses/s and 6 impulses/s, respectively. In another subgroup (20%), the CPR-R had a median of 15 impulses/s and the CPR-L had 8 impulses/s. In both groups, the differences were significant. Furthermore, the CPRs showed an asymmetrical photoresponse induced by a pulse of white light (700 Lux, 4 s). In one subgroup (30%), the CPR-L showed light-induced activity with a median of 73%, (interquartile range, IQR = 51), while the CPR-R had a median of 41%, (IQR = 47). In another subgroup (70%), the CPR-R showed a median of 56%, (IQR = 51) and the CPR-L had a median of 42%, (IQR = 46). In both groups, the differences were significant. Moreover, we observed a differential effect of temperature on CPR activity. These results suggest a functional asymmetry in both activities from left and right CPRs. These CPR activity fluctuations may modulate the processing of information by the nervous system.