Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J R Stat Soc Ser C Appl Stat ; 73(3): 658-681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39072300

ABSTRACT

We consider unsupervised classification by means of a latent multinomial variable which categorizes a scalar response into one of the L components of a mixture model which incorporates scalar and functional covariates. This process can be thought as a hierarchical model with the first level modelling a scalar response according to a mixture of parametric distributions and the second level modelling the mixture probabilities by means of a generalized linear model with functional and scalar covariates. The traditional approach of treating functional covariates as vectors not only suffers from the curse of dimensionality, since functional covariates can be measured at very small intervals leading to a highly parametrized model, but also does not take into account the nature of the data. We use basis expansions to reduce the dimensionality and a Bayesian approach for estimating the parameters while providing predictions of the latent classification vector. The method is motivated by two data examples that are not easily handled by existing methods. The first example concerns identifying placebo responders on a clinical trial (normal mixture model) and the other predicting illness for milking cows (zero-inflated mixture of the Poisson model).

2.
Front Plant Sci ; 14: 1303417, 2023.
Article in English | MEDLINE | ID: mdl-38148869

ABSTRACT

Tropical forage grasses, particularly those belonging to the Urochloa genus, play a crucial role in cattle production and serve as the main food source for animals in tropical and subtropical regions. The majority of these species are apomictic and tetraploid, highlighting the significance of U. ruziziensis, a sexual diploid species that can be tetraploidized for use in interspecific crosses with apomictic species. As a means to support breeding programs, our study investigates the feasibility of genome-wide family prediction in U. ruziziensis families to predict agronomic traits. Fifty half-sibling families were assessed for green matter yield, dry matter yield, regrowth capacity, leaf dry matter, and stem dry matter across different clippings established in contrasting seasons with varying available water capacity. Genotyping was performed using a genotyping-by-sequencing approach based on DNA samples from family pools. In addition to conventional genomic prediction methods, machine learning and feature selection algorithms were employed to reduce the necessary number of markers for prediction and enhance predictive accuracy across phenotypes. To explore the regulation of agronomic traits, our study evaluated the significance of selected markers for prediction using a tree-based approach, potentially linking these regions to quantitative trait loci (QTLs). In a multiomic approach, genes from the species transcriptome were mapped and correlated to those markers. A gene coexpression network was modeled with gene expression estimates from a diverse set of U. ruziziensis genotypes, enabling a comprehensive investigation of molecular mechanisms associated with these regions. The heritabilities of the evaluated traits ranged from 0.44 to 0.92. A total of 28,106 filtered SNPs were used to predict phenotypic measurements, achieving a mean predictive ability of 0.762. By employing feature selection techniques, we could reduce the dimensionality of SNP datasets, revealing potential genotype-phenotype associations. The functional annotation of genes near these markers revealed associations with auxin transport and biosynthesis of lignin, flavonol, and folic acid. Further exploration with the gene coexpression network uncovered associations with DNA metabolism, stress response, and circadian rhythm. These genes and regions represent important targets for expanding our understanding of the metabolic regulation of agronomic traits and offer valuable insights applicable to species breeding. Our work represents an innovative contribution to molecular breeding techniques for tropical forages, presenting a viable marker-assisted breeding approach and identifying target regions for future molecular studies on these agronomic traits.

3.
Stat Med ; 34(10): 1761-78, 2015 May 10.
Article in English | MEDLINE | ID: mdl-25682753

ABSTRACT

In this research article, we propose a class of models for positive and zero responses by means of a zero-augmented mixed regression model. Under this class, we are particularly interested in studying positive responses whose distribution accommodates skewness. At the same time, responses can be zero, and therefore, we justify the use of a zero-augmented mixture model. We model the mean of the positive response in a logarithmic scale and the mixture probability in a logit scale, both as a function of fixed and random effects. Moreover, the random effects link the two random components through their joint distribution and incorporate within-subject correlation because of the repeated measurements and between-subject heterogeneity. A Markov chain Monte Carlo algorithm is tailored to obtain Bayesian posterior distributions of the unknown quantities of interest, and Bayesian case-deletion influence diagnostics based on the q-divergence measure is performed. We apply the proposed method to a dataset from a 24 hour dietary recall study conducted in the city of São Paulo and present a simulation study to evaluate the performance of the proposed methods.


Subject(s)
Diet/statistics & numerical data , Models, Statistical , Algorithms , Bayes Theorem , Brazil , Computer Simulation , Humans , Likelihood Functions , Linear Models , Markov Chains , Mental Recall , Monte Carlo Method , Poisson Distribution
4.
Genet Sel Evol ; 40(4): 379-94, 2008.
Article in English | MEDLINE | ID: mdl-18558072

ABSTRACT

Dark spots in the fleece area are often associated with dark fibres in wool, which limits its competitiveness with other textile fibres. Field data from a sheep experiment in Uruguay revealed an excess number of zeros for dark spots. We compared the performance of four Poisson and zero-inflated Poisson (ZIP) models under four simulation scenarios. All models performed reasonably well under the same scenario for which the data were simulated. The deviance information criterion favoured a Poisson model with residual, while the ZIP model with a residual gave estimates closer to their true values under all simulation scenarios. Both Poisson and ZIP models with an error term at the regression level performed better than their counterparts without such an error. Field data from Corriedale sheep were analysed with Poisson and ZIP models with residuals. Parameter estimates were similar for both models. Although the posterior distribution of the sire variance was skewed due to a small number of rams in the dataset, the median of this variance suggested a scope for genetic selection. The main environmental factor was the age of the sheep at shearing. In summary, age related processes seem to drive the number of dark spots in this breed of sheep.


Subject(s)
Aging/genetics , Pigments, Biological/genetics , Sheep, Domestic/growth & development , Sheep, Domestic/genetics , Wool/growth & development , Animals , Bayes Theorem , Computer Simulation , Likelihood Functions , Models, Statistical , Poisson Distribution , Regression Analysis , Uruguay
SELECTION OF CITATIONS
SEARCH DETAIL