Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 22(1): 286, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620214

ABSTRACT

The rise in throughput and quality of long-read sequencing should allow unambiguous identification of full-length transcript isoforms. However, its application to single-cell RNA-seq has been limited by throughput and expense. Here we develop and characterize long-read Split-seq (LR-Split-seq), which uses combinatorial barcoding to sequence single cells with long reads. Applied to the C2C12 myogenic system, LR-split-seq associates isoforms to cell types with relative economy and design flexibility. We find widespread evidence of changing isoform expression during differentiation including alternative transcription start sites (TSS) and/or alternative internal exon usage. LR-Split-seq provides an affordable method for identifying cluster-specific isoforms in single cells.


Subject(s)
RNA Isoforms/metabolism , RNA-Seq/methods , Single-Cell Analysis/methods , Animals , Cell Differentiation/genetics , Cell Line , Cell Nucleus/genetics , Chromatin/metabolism , Genomics , Mice , Models, Genetic , Myogenin/genetics , PAX7 Transcription Factor/genetics , Transcription Initiation Site , Transcription, Genetic
2.
G3 (Bethesda) ; 9(8): 2687-2697, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31113823

ABSTRACT

Entomopathogenic nematodes from the genus Steinernema are lethal insect parasites that quickly kill their insect hosts with the help of their symbiotic bacteria. Steinernema carpocapsae is one of the most studied entomopathogens due to its broad lethality to diverse insect species and its effective commercial use as a biological control agent for insect pests, as well as a genetic model for studying parasitism, pathogenesis, and symbiosis. In this study, we used long-reads from the Pacific Biosciences platform and BioNano Genomics Irys system to assemble the most complete genome of the S. carpocapsae ALL strain to date, comprising 84.5 Mb in 16 scaffolds, with an N50 of 7.36 Mb. The largest scaffold, with 20.9 Mb, was identified as chromosome X based on sex-specific genome sequencing. The high level of contiguity allowed us to characterize gene density, repeat content, and GC content. RNA-seq data from 17 developmental stages, spanning from embryo to adult, were used to predict 30,957 gene models. Using this improved genome, we performed a macrosyntenic analysis to Caenorhabditis elegans and Pristionchus pacificus and found S. carpocapsae's chromosome X to be primarily orthologous to C. elegans' and P. pacificus' chromosome II and IV. We also investigated the expansion of protein families and gene expression differences between adult male and female stage nematodes. This new genome and more accurate set of annotations provide a foundation for additional comparative genomic and gene expression studies within the Steinernema clade and across the Nematoda phylum.


Subject(s)
Genome , Genomics , Nematoda/genetics , X Chromosome , Animals , Computational Biology , Female , Gene Expression Profiling , Genomics/methods , High-Throughput Nucleotide Sequencing , Male , Nematoda/classification , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...