Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Nephrol ; 32(5): 1053-1070, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33687977

ABSTRACT

BACKGROUND: Crumbs2 is expressed at embryonic stages as well as in the retina, brain, and glomerular podocytes. Recent studies identified CRB2 mutations as a novel cause of steroid-resistant nephrotic syndrome (SRNS). METHODS: To study the function of Crb2 at the renal filtration barrier, mice lacking Crb2 exclusively in podocytes were generated. Gene expression and histologic studies as well as transmission and scanning electron microscopy were used to analyze these Crb2podKO knockout mice and their littermate controls. Furthermore, high-resolution expansion microscopy was used to investigate Crb2 distribution in murine glomeruli. For pull-down experiments, live cell imaging, and transcriptome analyses, cell lines were applied that inducibly express fluorescent protein-tagged CRB2 wild type and mutants. RESULTS: Crb2podKO mice developed proteinuria directly after birth that preceded a prominent development of disordered and effaced foot processes, upregulation of renal injury and inflammatory markers, and glomerulosclerosis. Pull-down assays revealed an interaction of CRB2 with Nephrin, mediated by their extracellular domains. Expansion microscopy showed that in mice glomeruli, Crb2 and Nephrin are organized in adjacent clusters. SRNS-associated CRB2 protein variants and a mutant that lacks a putative conserved O-glycosylation site were not transported to the cell surface. Instead, mutants accumulated in the ER, showed altered glycosylation pattern, and triggered an ER stress response. CONCLUSIONS: Crb2 is an essential component of the podocyte's slit diaphragm, interacting with Nephrin. Loss of slit diaphragm targeting and increasing ER stress are pivotal factors for onset and progression of CRB2-related SRNS.


Subject(s)
Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Membrane Proteins/physiology , Nephrotic Syndrome/etiology , Proteinuria/etiology , Animals , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Female , Male , Membrane Proteins/metabolism , Mice , Nephrotic Syndrome/metabolism , Nephrotic Syndrome/pathology , Podocytes/metabolism , Proteinuria/metabolism , Proteinuria/pathology
2.
Neurophotonics ; 6(1): 015005, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30796881

ABSTRACT

The goal of understanding the architecture of neural circuits at the synapse level with a brain-wide perspective has powered the interest in high-speed and large field-of-view volumetric imaging at subcellular resolution. Here, we developed a method combining tissue expansion and light-sheet fluorescence microscopy to allow extended volumetric super resolution high-speed imaging of large mouse brain samples. We demonstrate the capabilities of this method by performing two color fast volumetric super resolution imaging of mouse CA1 and dentate gyrus molecular-, granule cell-, and polymorphic layers. Our method enables an exact evaluation of granule cell and neurite morphology within the context of large cell ensembles spanning several orders of magnitude in resolution. We found that imaging a brain region of 1 mm 3 in super resolution using light-sheet fluorescence expansion microscopy is about 17-fold faster than imaging the same region by a current state-of-the-art high-resolution confocal laser scanning microscope.

SELECTION OF CITATIONS
SEARCH DETAIL
...