Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 147(9): 094903, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886626

ABSTRACT

Two approaches exist in the literature for describing the orientational distribution function (ODF) of the molecular directors in SmA* phase of liquid crystals, though several models are recently proposed in the literature for explaining the de Vries behaviour. These ODFs correspond to either the conventional unimodal arrangements of molecular directors arising from the mean field theory that leads to the broad or sugar-loaf like distribution or to the "diffuse-cone-shaped" type distribution proposed by de Vries. The hypothesis by de Vries provides for a realistic explanation as to how at a molecular level, a first-order SmA* to SmC* transition can occur where the uniform molecular director azimuthal distributions condense to values lying within a narrow range of angles; finally these condense to a single value while at the same time ensuring a little or no concomitant shrinkage in the layer spacing. The azimuthal distribution of the in-layer directors is probed using IR and polarized Raman spectroscopic techniques. The latter allows us to obtain the ODF and the various order parameters for the uniaxial and the biaxial phases. Based on the results of these measurements, we conclude that the "cone-shaped" (or volcano-shaped) de Vries type of distribution can most preferably describe SmA* where "a first-order phase transition from SmA* to SmC*" and a low layer shrinkage can both be easily explained.

2.
Phys Rev E ; 95(6-1): 062704, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28709233

ABSTRACT

Infrared and dielectric spectroscopic techniques are used to investigate the characteristics of two chiral smectics, namely, 1,1,3,3,5,5,5-heptamethyltrisiloxane 1-[4^{'}-(undecyl-1-oxy)-4-biphenyl(S,S)-2-chloro-3-methylpentanoate] (MSi_{3}MR_{11}) and tricarbosilane-hexyloxy-benzoic acid (S)-4'-(1-methyl-hexyloxy)-3'-nitro-biphenyl-4-yl ester (W599). The orientational features and the field dependencies of the apparent tilt angle and the dichroic ratio for homogeneous planar-aligned samples were calculated from the absorbance profiles obtained at different temperatures especially in the smectic-A* phase of these liquid crystals. The dichroic ratios of the C-C phenyl ring stretching vibrations were considered for the determination of the tilt angle at different temperatures and different voltages. The low values of the order parameter obtained with and without an electric field applied across the cell in the Sm-A^{*} phase for both smectics are consistent with the de Vries concept. The generalized Langevin-Debye model introduced in the literature for explaining the electro-optical response has been applied to the results from infrared spectroscopy. The results show that the dipole moment of the tilt-correlated domain diverges as the transition temperature from Sm-A^{*} to Sm-C^{*} is approached. The Debye-Langevin model is found to be extremely effective in confirming some of the conclusions of the de Vries chiral smectics and gives additional results on the order parameter and the dichroic ratio as a function of the field across the cell. Dielectric spectroscopy finds large dipolar fluctuations in the Sm-A^{*} phase for both compounds and again these confirm their de Vries behavior.

3.
Phys Rev E ; 95(3-1): 032701, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28415229

ABSTRACT

A heptamethyltrisiloxane liquid crystal (LC) exhibiting I-SmA^{*}-SmC^{*} phases has been characterized by calorimetry, polarizing microscopy, x-ray diffraction, electro-optics, and dielectric spectroscopy. Observations of a large electroclinic effect, a large increase in the birefringence (Δn) with electric field, a low shrinkage in the layer thickness (∼1.75%) at 20 °C below the SmA^{*}-SmC^{*} transition, and low values of the reduction factor (∼0.40) suggest that the SmA^{*} phase in this material is of the de Vries type. The reduction factor is a measure of the layer shrinkage in the SmC^{*} phase and it should be zero for an ideal de Vries. Moreover, a decrease in the magnitude of Δn with decreasing temperature indicates the presence of the temperature-dependent tilt angle in the SmA^{*} phase. The electro-optic behavior is explained by the generalized Langevin-Debye model as given by Shen et al. [Y. Shen et al., Phys. Rev. E 88, 062504 (2013)10.1103/PhysRevE.88.062504]. The soft-mode dielectric relaxation strength shows a critical behavior when the system goes from the SmA^{*} to the SmC^{*} phase.

4.
Phys Rev E ; 96(4-1): 042701, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29347616

ABSTRACT

Calamitic liquid crystals based on 5-phenyl-pyrimidine derivatives have been designed, synthesized, and characterized. The 5-phenyl pyrimidine core was functionalized with a chiral (R,R)-2,3-epoxyhexoxy chain on one side and either siloxane or perfluoro terminated chains on the opposite side. The one involving a perfluorinated chain shows SmA^{*} phase over a wide temperature range of 82 °C, whereas the siloxane analog exhibits both SmA^{*} and SmC^{*} phases over a broad range of temperatures, and a weak first-order SmA^{*}-SmC^{*} transition is observed. For the siloxane analog, the reduction factor for the layer shrinkage R (relative to its thickness at the SmA^{*}-SmC^{*} transition temperature, T_{AC}) is ∼0.373, and layer shrinkage is 1.7% at a temperature of 13 °C below the T_{AC}. This compound is considered to have "de Vries smectic" characteristics with the de Vries coefficient C_{deVries} of ∼0.86 on the scale of zero (maximum-layer shrinkage) to 1 (zero-layer shrinkage). A three-parameter mean-field model is introduced for the orientational distribution function (ODF) to reproduce the electro-optic properties. This model explains the experimental results and leads to the ODF, which exhibits a crossover from the sugar-loaf to diffuse-cone ODF some 3 °C above T_{AC}.

SELECTION OF CITATIONS
SEARCH DETAIL
...