Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 856
Filter
2.
bioRxiv ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39005313

ABSTRACT

Opioid overdose accounts for nearly 75,000 deaths per year in the United States, representing a leading cause of mortality amongst the prime working age population (25-54 years). At overdose levels, opioid-induced respiratory depression becomes fatal without timely administration of the rescue drug naloxone. Currently, overdose survival relies entirely on bystander intervention, requiring a nearby person to discover and identify the overdosed individual, and have immediate access to naloxone to administer. Government efforts have focused on providing naloxone in abundance but do not address the equally critical component for overdose rescue: a willing and informed bystander. To address this unmet need, we developed the Naloximeter: a class of life-saving implantable devices that autonomously detect and treat overdose, with the ability to simultaneously contact first-responders. We present three Naloximeter platforms, for both fundamental research and clinical translation, all equipped with optical sensors, drug delivery mechanisms, and a supporting ecosystem of technology to counteract opioid-induced respiratory depression. In small and large animal studies, the Naloximeter rescues from otherwise fatal opioid overdose within minutes. This work introduces life-changing, clinically translatable technologies that broadly benefit a susceptible population recovering from opioid use disorder.

3.
Article in English | MEDLINE | ID: mdl-38885105

ABSTRACT

Cough is an important symptom in children with acute and chronic respiratory disease. Daily cough is common in Cystic Fibrosis (CF) and increased cough is a symptom of pulmonary exacerbation. To date, cough assessment is primarily subjective in clinical practice and research. Attempts to develop objective, automatic cough counting tools have faced reliability issues in noisy environments and practical barriers limiting long-term use. This single-center pilot study evaluated usability, acceptability and performance of a mechanoacoustic sensor (MAS), previously used for cough classification in adults, in 36 children with CF over brief and multi-day periods in four cohorts. Children whose health was at baseline and who had symptoms of pulmonary exacerbation were included. We trained, validated, and deployed custom deep learning algorithms for accurate cough detection and classification from other vocalization or artifacts with an overall area under the receiver-operator characteristic curve (AUROC) of 0.96 and average precision (AP) of 0.93. Child and parent feedback led to a redesign of the MAS towards a smaller, more discreet device acceptable for daily use in children. Additional improvements optimized power efficiency and data management. The MAS's ability to objectively measure cough and other physiologic signals across clinic, hospital, and home settings is demonstrated, particularly aided by an AUROC of 0.97 and AP of 0.96 for motion artifact rejection. Examples of cough frequency and physiologic parameter correlations with participant-reported outcomes and clinical measurements for individual patients are presented. The MAS is a promising tool in objective longitudinal evaluation of cough in children with CF.

4.
Article in English | MEDLINE | ID: mdl-38847913

ABSTRACT

PURPOSE: Compartment syndrome remains difficult to diagnose early in its clinical course. Pressure transducer catheters have been used to directly measure intracompartmental pressure (ICP), but this method is unreliable, with a false positive rate of 35%. We have previously used intramuscular near infrared spectroscopy to detect changes in tissue oxygen saturation (StO2) in response to increasing ICP using a novel implantable probe. However, measuring StO2 may not be sufficient to identify CS in the clinical setting. The pathophysiology of CS consists of increased ICP, leading to decreased tissue perfusion, and resulting in reduced tissue oxygenation. More clinically useful information may come from the integration of multiple data streams to aid in the diagnosis of CS. In this study, we present a novel, intramuscular probe capable of simultaneous measurement of ICP, StO2, and microvascular blood flow in a porcine model of ACS. METHODS: Proof of concept for this device is demonstrated in a porcine lower extremity balloon compression model of ACS. Pressure was maintained for 20 min (short-term) or 3 h (long-term) before the balloon volume was removed. RESULTS: In both short- and long-term experiments, as ICP increased with increasing balloon volume, the novel multimodal sensor simultaneously and reliably detected pressure elevation and corresponding reversible reductions in microvascular flow rate and tissue oxygenation. CONCLUSION: This novel trimodal device simultaneously measured the elevated ICP, decreased perfusion, and tissue ischemia of evolving ACS, substantiating our basic understanding of CS pathophysiology.

5.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798493

ABSTRACT

Neurotechnologies and genetic tools for dissecting neural circuit functions have advanced rapidly over the past decade, although the development of complementary pharmacological method-ologies has comparatively lagged. Understanding the precise pharmacological mechanisms of neuroactive compounds is critical for advancing basic neurobiology and neuropharmacology, as well as for developing more effective treatments for neurological and neuropsychiatric disorders. However, integrating modern tools for assessing neural activity in large-scale neural networks with spatially localized drug delivery remains a major challenge. Here, we present a dual microfluidic-photometry platform that enables simultaneous intracranial drug delivery with neural dynamics monitoring in the rodent brain. The integrated platform combines a wireless, battery-free, miniaturized fluidic microsystem with optical probes, allowing for spatially and temporally specific drug delivery while recording activity-dependent fluorescence using genetically encoded calcium indicators (GECIs), neurotransmitter sensors GRAB NE and GRAB DA , and neuropeptide sensors. We demonstrate the performance this platform for investigating neuropharmacological mechanisms in vivo and characterize its efficacy in probing precise mechanistic actions of neuroactive compounds across several rapidly evolving neuroscience domains.

6.
Biosens Bioelectron ; 258: 116298, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38701537

ABSTRACT

Wireless activation of the enteric nervous system (ENS) in freely moving animals with implantable optogenetic devices offers a unique and exciting opportunity to selectively control gastrointestinal (GI) transit in vivo, including the gut-brain axis. Programmed delivery of light to targeted locations in the GI-tract, however, poses many challenges not encountered within the central nervous system (CNS). We report here the development of a fully implantable, battery-free wireless device specifically designed for optogenetic control of the GI-tract, capable of generating sufficient light over large areas to robustly activate the ENS, potently inducing colonic motility ex vivo and increased propulsion in vivo. Use in in vivo studies reveals unique stimulation patterns that increase expulsion of colonic content, likely mediated in part by activation of an extrinsic brain-gut motor pathway, via pelvic nerves. This technology overcomes major limitations of conventional wireless optogenetic hardware designed for the CNS, providing targeted control of specific neurochemical classes of neurons in the ENS and brain-gut axis, for direct modulation of GI-transit and associated behaviours in freely moving animals.


Subject(s)
Enteric Nervous System , Optogenetics , Wireless Technology , Animals , Optogenetics/instrumentation , Enteric Nervous System/physiology , Mice , Wireless Technology/instrumentation , Brain-Gut Axis/physiology , Biosensing Techniques/instrumentation , Equipment Design , Brain/physiology , Mice, Inbred C57BL
7.
Proc Natl Acad Sci U S A ; 121(22): e2404007121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768347

ABSTRACT

Sensations of heat and touch produced by receptors in the skin are of essential importance for perceptions of the physical environment, with a particularly powerful role in interpersonal interactions. Advances in technologies for replicating these sensations in a programmable manner have the potential not only to enhance virtual/augmented reality environments but they also hold promise in medical applications for individuals with amputations or impaired sensory function. Engineering challenges are in achieving interfaces with precise spatial resolution, power-efficient operation, wide dynamic range, and fast temporal responses in both thermal and in physical modulation, with forms that can extend over large regions of the body. This paper introduces a wireless, skin-compatible interface for thermo-haptic modulation designed to address some of these challenges, with the ability to deliver programmable patterns of enhanced vibrational displacement and high-speed thermal stimulation. Experimental and computational investigations quantify the thermal and mechanical efficiency of a vertically stacked design layout in the thermo-haptic stimulators that also supports real-time, closed-loop control mechanisms. The platform is effective in conveying thermal and physical information through the skin, as demonstrated in the control of robotic prosthetics and in interactions with pressure/temperature-sensitive touch displays.


Subject(s)
Touch , Virtual Reality , Wireless Technology , Humans , Wireless Technology/instrumentation , Touch/physiology , Skin , Robotics/instrumentation , Robotics/methods
8.
J Int AIDS Soc ; 27(4): e26231, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38627887

ABSTRACT

INTRODUCTION: We sought to characterize social and structural drivers of HIV vulnerability for transgender women (TGW) in Zimbabwe, where TGW are not legally recognized, and explore differences in vulnerability by feminine presentation. METHODS: A secondary analysis was conducted with a sub-sample of participants recruited from a 2019 respondent-driven sampling survey that comprised men who have sex with men, TGW and genderqueer individuals assigned male sex at birth, from two cities in Zimbabwe. Survey questionnaires captured information related to socio-demographics, sexual and substance use behaviours, and social and structural barriers to HIV services. Secondary analyses were restricted to participants who identified as female, transfemale or transwomen (236/1538) and were unweighted. Descriptive statistics were used to calculate sample estimates and chi-square and Fisher's exact tests were used to assess differences in vulnerability by feminine presentation. RESULTS: Among 236 TGW, almost half (45.3%) presented as feminine in the 6 months preceding the survey and 8.5% had ever used hormones to affirm their gender identities. Median age among TGW was 23 years (interquartile range: 20-26). Feminine presenting TGW in our sample had higher prevalence of arrest (15.9% vs. 3.9%), rejection by family/friends (38.3% vs. 14.0%), employment termination (11.2% vs. 3.9%), employment refusal (14.0% vs. 3.9%), denial of healthcare (16.8% vs. 2.3%), physical, sexual or verbal harassment or abuse (59.8% vs. 34.1%), alcohol dependence (32.7% vs. 12.4%), recent transactional sex with a male or TGW partner (30.8% vs. 13.3%) and recent non-injection drug use (38.3% vs. 20.2%) than non-feminine presenting TGW (all p-value <0.05). CONCLUSIONS: Findings suggest that TGW, particularly feminine presenting TGW, experience social and structural inequities which may contribute to HIV vulnerability. Interventions aimed at addressing inequities, including trans competency training for providers and gender-affirming, psychosocial and legal support services for TGW, might mitigate risk.


Subject(s)
HIV Infections , Sexual and Gender Minorities , Transgender Persons , Infant, Newborn , Male , Female , Humans , Young Adult , Adult , Homosexuality, Male , HIV Infections/epidemiology , HIV Infections/psychology , Zimbabwe/epidemiology , Sexual Behavior , Gender Identity , Surveys and Questionnaires
9.
Int J Dermatol ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602089

ABSTRACT

BACKGROUND: Erythropoietic protoporphyria (EPP) causes painful light sensitivity, limiting quality of life. Our objective was to develop and validate a wearable light exposure device and correlate measurements with light sensitivity in EPP to predict and prevent symptoms. METHODS: A wearable light dosimeter was developed to capture light doses of UVA, blue, and red wavelengths. A prospective observational pilot study was performed in which five EPP patients wore two light dosimeters for 3 weeks, one as a watch, and one as a shirt clip. RESULTS: Standard deviation (SD) increases from the mean in the daily blue light dose increased the odds ratio (OR) for symptom risk more than the self-reported outdoor time (OR 2.76 vs. 2.38) or other wavelengths, and a one SD increase from the mean in the daily blue light wristband device dose increased the OR for symptom risk more than the daily blue light shirt clip (OR 2.45 vs. 1.62). The area under the receiver operator curve for the blue light wristband dose was 0.78, suggesting 78% predictive accuracy. CONCLUSION: These data demonstrate that wearable blue light dosimetry worn as a wristband is a promising method for measuring light exposure and predicting and preventing symptoms in EPP.

10.
Sci Adv ; 10(16): eadj0268, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640247

ABSTRACT

Continuous monitoring of biomarkers at locations adjacent to targeted internal organs can provide actionable information about postoperative status beyond conventional diagnostic methods. As an example, changes in pH in the intra-abdominal space after gastric surgeries can serve as direct indicators of potentially life-threatening leakage events, in contrast to symptomatic reactions that may delay treatment. Here, we report a bioresorbable, wireless, passive sensor that addresses this clinical need, designed to locally monitor pH for early detection of gastric leakage. A pH-responsive hydrogel serves as a transducer that couples to a mechanically optimized inductor-capacitor circuit for wireless readout. This platform enables real-time monitoring of pH with fast response time (within 1 hour) over a clinically relevant period (up to 7 days) and timely detection of simulated gastric leaks in animal models. These concepts have broad potential applications for temporary sensing of relevant biomarkers during critical risk periods following diverse types of surgeries.


Subject(s)
Absorbable Implants , Transducers , Animals , Wireless Technology , Hydrogen-Ion Concentration , Biomarkers
11.
JMIR Res Protoc ; 13: e54388, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652526

ABSTRACT

BACKGROUND: Respiratory diseases, including active tuberculosis (TB), asthma, and chronic obstructive pulmonary disease (COPD), constitute substantial global health challenges, necessitating timely and accurate diagnosis for effective treatment and management. OBJECTIVE: This research seeks to develop and evaluate a noninvasive user-friendly artificial intelligence (AI)-powered cough audio classifier for detecting these respiratory conditions in rural Tanzania. METHODS: This is a nonexperimental cross-sectional research with the primary objective of collection and analysis of cough sounds from patients with active TB, asthma, and COPD in outpatient clinics to generate and evaluate a noninvasive cough audio classifier. Specialized cough sound recording devices, designed to be nonintrusive and user-friendly, will facilitate the collection of diverse cough sound samples from patients attending outpatient clinics in 20 health care facilities in the Shinyanga region. The collected cough sound data will undergo rigorous analysis, using advanced AI signal processing and machine learning techniques. By comparing acoustic features and patterns associated with TB, asthma, and COPD, a robust algorithm capable of automated disease discrimination will be generated facilitating the development of a smartphone-based cough sound classifier. The classifier will be evaluated against the calculated reference standards including clinical assessments, sputum smear, GeneXpert, chest x-ray, culture and sensitivity, spirometry and peak expiratory flow, and sensitivity and predictive values. RESULTS: This research represents a vital step toward enhancing the diagnostic capabilities available in outpatient clinics, with the potential to revolutionize the field of respiratory disease diagnosis. Findings from the 4 phases of the study will be presented as descriptions supported by relevant images, tables, and figures. The anticipated outcome of this research is the creation of a reliable, noninvasive diagnostic cough classifier that empowers health care professionals and patients themselves to identify and differentiate these respiratory diseases based on cough sound patterns. CONCLUSIONS: Cough sound classifiers use advanced technology for early detection and management of respiratory conditions, offering a less invasive and more efficient alternative to traditional diagnostics. This technology promises to ease public health burdens, improve patient outcomes, and enhance health care access in under-resourced areas, potentially transforming respiratory disease management globally. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/54388.


Subject(s)
Artificial Intelligence , Asthma , Cough , Machine Learning , Humans , Tanzania , Cough/diagnosis , Cross-Sectional Studies , Asthma/diagnosis , Pulmonary Disease, Chronic Obstructive/diagnosis , Rural Population , Male , Female
12.
Behav Pharmacol ; 35(2-3): 122-131, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38451024

ABSTRACT

Prescription opioids are the gold standard for treating moderate to severe pain despite their well-documented adverse effects. Of all prescription medications, opioids are abused most widely, and fatal overdoses have reached epidemic levels. One strategy for improving the margin of safety of opioids is combining them with non-opioid drugs to decrease the opioid dose needed for pain relief, thereby reducing adverse effects that occur with larger doses. The N-methyl-D-aspartate receptor antagonist ketamine has been used safely as an analgesic but only under a very limited range of conditions. The current studies characterized the antinociceptive, behavioral suppressant, and gastrointestinal effects of morphine and ketamine alone and in mixtures to determine their interaction in 24 adult male Sprague-Dawley rats (n = 8 per assay). Given alone, both morphine and ketamine produced antinociception, decreased responding for food, and reduced gastrointestinal transit (i.e. produced constipation). The effects of morphine:ketamine mixtures generally were additive, except for the antinociceptive effects of 1:1 mixtures for which the difference in slope (i.e. non-parallel shift) between the observed and predicted effects suggested synergy at smaller doses and additivity at larger doses. The potency of morphine to produce constipation was not enhanced by administration of morphine:ketamine mixtures with antinociceptive effects. The nature of the interaction between morphine and ketamine for adverse effects such as dependence, withdrawal, abuse, or respiratory depression remains unknown but also might be related to the ratio of each drug in mixtures. It will be important to identify conditions that produce the largest potential therapeutic window in humans.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Ketamine , Adult , Humans , Male , Rats , Animals , Morphine/adverse effects , Ketamine/adverse effects , Rats, Sprague-Dawley , Analgesics, Opioid/adverse effects , Pain/drug therapy
13.
Proc Natl Acad Sci U S A ; 121(14): e2400868121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547066

ABSTRACT

Partial cystectomy procedures for urinary bladder-related dysfunction involve long recovery periods, during which urodynamic studies (UDS) intermittently assess lower urinary tract function. However, UDS are not patient-friendly, they exhibit user-to-user variability, and they amount to snapshots in time, limiting the ability to collect continuous, longitudinal data. These procedures also pose the risk of catheter-associated urinary tract infections, which can progress to ascending pyelonephritis due to prolonged lower tract manipulation in high-risk patients. Here, we introduce a fully bladder-implantable platform that allows for continuous, real-time measurements of changes in mechanical strain associated with bladder filling and emptying via wireless telemetry, including a wireless bioresorbable strain gauge validated in a benchtop partial cystectomy model. We demonstrate that this system can reproducibly measure real-time changes in a rodent model up to 30 d postimplantation with minimal foreign body response. Studies in a nonhuman primate partial cystectomy model demonstrate concordance of pressure measurements up to 8 wk compared with traditional UDS. These results suggest that our system can be used as a suitable alternative to UDS for long-term postoperative bladder recovery monitoring.


Subject(s)
Urinary Bladder , Urinary Tract Infections , Animals , Humans , Urinary Bladder/surgery , Urodynamics/physiology , Prostheses and Implants , Cystectomy
14.
J Clin Tuberc Other Mycobact Dis ; 35: 100427, 2024 May.
Article in English | MEDLINE | ID: mdl-38516197

ABSTRACT

Background: Using data from the Zimbabwe Population-based HIV Impact Assessment survey 2015-2016, we examined the TB care cascade and factors associated with not receiving TB diagnostic testing among adult PLHIV with TB symptoms. Methods: Statistical Analysis was limited to PLHIV aged 15 years and older in HIV care. Weighted logistic regression with not receiving TB testing as outcome was adjusted for covariates with crude odd ratios (ORs) with p < 0.25. All analyses accounted for multistage survey design. Results: Among 3507 adult PLHIV in HIV care, 2288 (59.7 %, 95 % CI:58.1-61.3) were female and 2425 (63.6 %, 95 % CI:61.1-66.1) lived in rural areas. 1197(48.7 %, 95 % CI:46.5-51.0) reported being screened for TB symptoms at their last HIV care visit. In the previous 12 months, 639 (26.0 %, 95 % CI:23.9-28.1) reported having symptoms and of those, 239 (37.8 %, 95 % CI:33.3-42.2) received TB testing. Of PLHIV tested for TB, 36 (49.5 %, 95 % CI:35.0-63.1) were diagnosed with TB; 32 (90.3 %, 95 % CI:78.9-100) of those diagnosed with TB received treatment. Never having used IPT was associated with not receiving TB testing. Conclusion: The results suggest suboptimal utilization of TB screening and diagnostic testing among PLHIV. New approaches are needed to reach opportunities missed in the HIV/TB integrated services.

15.
Biosens Bioelectron ; 253: 116166, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38428069

ABSTRACT

Eccrine sweat can serve as a source of biomarkers for assessing physiological health and nutritional balance, for tracking loss of essential species from the body and for evaluating exposure to hazardous substances. The growing interest in this relatively underexplored class of biofluid arises in part from its non-invasive ability for capture and analysis. The simplest devices, and the only ones that are commercially available, exploit soft microfluidic constructs and colorimetric assays with purely passive modes of operation. The most sophisticated platforms exploit batteries, electronic components and radio hardware for inducing sweat, for electrochemical evaluation of its content and for wireless transmission of this information. The work reported here introduces a technology that combines the advantages of these two different approaches, in the form of a cost-effective, easy-to-use device that supports on-demand evaluation of multiple biomarkers in sweat. This flexible, skin-interfaced, miniaturized system incorporates a hydrogel that contains an approved drug to activate eccrine sweat glands, electrodes and a simple circuit and battery to delivery this drug by iontophoresis through the surface of the skin, microfluidic channels and microreservoirs to capture the induced sweat, and multiple colorimetric assays to evaluate the concentrations of chloride, zinc, and iron. As demonstrated in healthy human participants monitored before and after a meal, such devices yield results that match those of traditional laboratory analysis techniques. Clinical studies that involve cystic fibrosis pediatric patients illustrate the use of this technology as a simple, painless, and reliable alternative to traditional hospital systems for measurements of sweat chloride.


Subject(s)
Biosensing Techniques , Sweat , Humans , Child , Chlorides , Colorimetry , Biomarkers
16.
Science ; 383(6687): 1096-1103, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38452063

ABSTRACT

Monitoring homeostasis is an essential aspect of obtaining pathophysiological insights for treating patients. Accurate, timely assessments of homeostatic dysregulation in deep tissues typically require expensive imaging techniques or invasive biopsies. We introduce a bioresorbable shape-adaptive materials structure that enables real-time monitoring of deep-tissue homeostasis using conventional ultrasound instruments. Collections of small bioresorbable metal disks distributed within thin, pH-responsive hydrogels, deployed by surgical implantation or syringe injection, allow ultrasound-based measurements of spatiotemporal changes in pH for early assessments of anastomotic leaks after gastrointestinal surgeries, and their bioresorption after a recovery period eliminates the need for surgical extraction. Demonstrations in small and large animal models illustrate capabilities in monitoring leakage from the small intestine, the stomach, and the pancreas.


Subject(s)
Absorbable Implants , Anastomotic Leak , Gastrointestinal Tract , Ultrasonics , Animals , Humans , Homeostasis , Stomach , Gastrointestinal Tract/surgery , Anastomotic Leak/diagnostic imaging , Models, Animal
17.
PNAS Nexus ; 3(3): pgae110, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38516273

ABSTRACT

Recent advances in passive flying systems inspired by wind-dispersed seeds contribute to increasing interest in their use for remote sensing applications across large spatial domains in the Lagrangian frame of reference. These concepts create possibilities for developing and studying structures with performance characteristics and operating mechanisms that lie beyond those found in nature. Here, we demonstrate a hybrid flier system, fabricated through a process of controlled buckling, to yield unusual geometries optimized for flight. Specifically, these constructs simultaneously exploit distinct fluid phenomena, including separated vortex rings from features that resemble those of dandelion seeds and the leading-edge vortices derived from behaviors of maple seeds. Advanced experimental measurements and computational simulations of the aerodynamics and induced flow physics of these hybrid fliers establish a concise, scalable analytical framework for understanding their flight mechanisms. Demonstrations with functional payloads in various forms, including bioresorbable, colorimetric, gas-sensing, and light-emitting platforms, illustrate examples with diverse capabilities in sensing and tracking.

18.
Neuron ; 112(11): 1764-1777.e5, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38537641

ABSTRACT

Comprehensive, continuous quantitative monitoring of intricately orchestrated physiological processes and behavioral states in living organisms can yield essential data for elucidating the function of neural circuits under healthy and diseased conditions, for defining the effects of potential drugs and treatments, and for tracking disease progression and recovery. Here, we report a wireless, battery-free implantable device and a set of associated algorithms that enable continuous, multiparametric physio-behavioral monitoring in freely behaving small animals and interacting groups. Through advanced analytics approaches applied to mechano-acoustic signals of diverse body processes, the device yields heart rate, respiratory rate, physical activity, temperature, and behavioral states. Demonstrations in pharmacological, locomotor, and acute and social stress tests and in optogenetic studies offer unique insights into the coordination of physio-behavioral characteristics associated with healthy and perturbed states. This technology has broad utility in neuroscience, physiology, behavior, and other areas that rely on studies of freely moving, small animal models.


Subject(s)
Behavior, Animal , Optogenetics , Wireless Technology , Animals , Behavior, Animal/physiology , Optogenetics/methods , Mice , Heart Rate/physiology , Male , Prostheses and Implants , Respiratory Rate/physiology , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation , Algorithms
19.
Nat Biomed Eng ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499643

ABSTRACT

Diagnosing and monitoring inflammatory bowel diseases, such as Crohn's disease, involves the use of endoscopic imaging, biopsies and serology. These infrequent tests cannot, however, identify sudden onsets and severe flare-ups to facilitate early intervention. Hence, about 70% of patients with Crohn's disease require surgical intestinal resections in their lifetime. Here we report wireless, miniaturized and implantable temperature sensors for the real-time chronic monitoring of disease progression, which we tested for nearly 4 months in a mouse model of Crohn's-disease-like ileitis. Local measurements of intestinal temperature via intraperitoneally implanted sensors held in place against abdominal muscular tissue via two sutures showed the development of ultradian rhythms at approximately 5 weeks before the visual emergence of inflammatory skip lesions. The ultradian rhythms showed correlations with variations in the concentrations of stress hormones and inflammatory cytokines in blood. Decreasing average temperatures over the span of approximately 23 weeks were accompanied by an increasing percentage of inflammatory species in ileal lesions. These miniaturized temperature sensors may aid the early treatment of inflammatory bowel diseases upon the detection of episodic flare-ups.

20.
Heliyon ; 10(3): e25790, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352793

ABSTRACT

Objectives: To measure HIV and Hepatitis B virus (HBV) prevalence and associated risk behaviors among men who have sex with men (MSM) and transgender women/genderqueer individuals (TGW/GQ) in Zimbabwe. Methods: We conducted a biobehavioral survey using respondent-driven sampling (RDS) among adult MSM and TGW/GQ in Harare and Bulawayo, Zimbabwe in 2019. Participants completed a questionnaire and underwent testing for HIV and HBV. Results: Overall, 1,510 (Harare: 694, Bulawayo 816) participants were enrolled and consented to testing; 3.8 % (58) tested positive for HBV, 22.5 % (339) tested positive for HIV, and 2.2 % (33) tested positive for both HIV and HBV. HBV prevalence was higher among participants with HIV compared to HIV-negative participants (9.7 % vs. 2.1 %, p < 0.0001). Overall, HBV prevalence was not statistically different between MSM and TGW/GQ (3.7 % vs 4.5 %, p = 0.49) nor between Harare and Bulawayo (3.3 % vs 4.3 %, p = 0.33). Conclusions: Our survey demonstrates the prevalence of HBV among MSM and TGW/GQ is lower than other estimates of HBV among MSM in Africa but remains high among our survey population living with HIV highlighting the need to expand HBV testing and treatment services, especially among people with HIV in Zimbabwe.

SELECTION OF CITATIONS
SEARCH DETAIL