ABSTRACT
The circadian clock of Arabidopsis thaliana controls many physiological and molecular processes, allowing plants to anticipate daily changes in their environment. However, developing a detailed understanding of how oscillations in mRNA levels are connected to oscillations in co/post-transcriptional processes, such as splicing, has remained a challenge. Here we applied a combined approach using deep transcriptome sequencing and bioinformatics tools to identify novel circadian-regulated genes and splicing events. Using a stringent approach, we identified 300 intron retention, eight exon skipping, 79 alternative 3' splice site usage, 48 alternative 5' splice site usage, and 350 multiple (more than one event type) annotated events under circadian regulation. We also found seven and 721 novel alternative exonic and intronic events. Depletion of the circadian-regulated splicing factor AtSPF30 homologue resulted in the disruption of a subset of clock-controlled splicing events. Altogether, our global circadian RNA-seq coupled with an in silico, event-centred, splicing analysis tool offers a new approach for studying the interplay between the circadian clock and the splicing machinery at a global scale. The identification of many circadian-regulated splicing events broadens our current understanding of the level of control that the circadian clock has over this co/post-transcriptional regulatory layer.
Subject(s)
Alternative Splicing , Arabidopsis/metabolism , Circadian Rhythm , Gene Expression Profiling , Alternative Splicing/physiology , Arabidopsis/genetics , Arabidopsis/physiology , Circadian Rhythm/physiology , Genes, Plant/genetics , TranscriptomeABSTRACT
The circadian clock modulates immune responses in plants and animals; however, it is unclear how host-pathogen interactions affect the clock. Here we analyzed clock function in Arabidopsis thaliana mutants with defective immune responses and found that enhanced disease susceptibility 4 (eds4) displays alterations in several circadian rhythms. Mapping by sequencing revealed that EDS4 encodes the ortholog of NUCLEOPORIN 205, a core component of the inner ring of the nuclear pore complex (NPC). Consistent with the idea that the NPC specifically modulates clock function, we found a strong enrichment in core clock genes, as well as an increased nuclear to total mRNA accumulation, among genes that were differentially expressed in eds4 mutants. Interestingly, infection with Pseudomonas syringae in wild-type (WT) plants downregulated the expression of several morning core clock genes as early as 1 h post-infection, including all members of the NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED (LNK) gene family, and this effect was attenuated in eds4. Furthermore, lnk mutants were more susceptible than the WT to P. syringae infection. These results indicate that bacterial infection, acting in part through the NPC, alters core clock gene expression and/or mRNA accumulation in a way that favors bacterial growth and disease susceptibility.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/microbiology , CLOCK Proteins/metabolism , Gene Expression Regulation, Plant/immunology , Plant Diseases/microbiology , Pseudomonas syringae/physiology , Animals , Arabidopsis Proteins/genetics , CLOCK Proteins/genetics , Mutation , Plant Diseases/immunologyABSTRACT
Light signaling pathways interact with the circadian clock to help organisms synchronize physiological and developmental processes to periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Members of the family of NIGHT LIGHTâ»INDUCIBLE AND CLOCK-REGULATED (LNK) genes play key roles linking light regulation of gene expression to the control of daily and seasonal rhythms in Arabidopsis thaliana. Particularly, LNK1 and LNK2 were shown to control circadian rhythms, photomorphogenic responses, and photoperiod-dependent flowering time. Here we analyze the role of the four members of the LNK family in Arabidopsis in these processes. We found that depletion of the closely related LNK3 and LNK4 in a lnk1;lnk2 mutant background affects circadian rhythms, but not other clock-regulated processes such as flowering time and seedling photomorphogenesis. Nevertheless, plants defective in all LNK genes (lnkQ quadruple mutants) display developmental alterations that lead to increased rosette size, biomass, and enhanced phototropic responses. Our work indicates that members of the LNK family have both distinctive and partially overlapping functions, and are an essential link to orchestrate light-regulated developmental processes.
ABSTRACT
Circadian rhythms are based on endogenous clocks that allow organisms to adjust their physiology and behavior by entrainment to the solar day and, in turn, to select the optimal times for most biological variables. Diverse model systems-including mice, flies, fungi, plants, and bacteria-have provided important insights into the mechanisms of circadian rhythmicity. However, the general principles that govern the circadian clock of Caenorhabditis elegans have remained largely elusive. Here we report robust molecular circadian rhythms in C elegans recorded with a bioluminescence assay in vivo and demonstrate the main features of the circadian system of the nematode. By constructing a luciferase-based reporter coupled to the promoter of the suppressor of activated let-60 Ras (sur-5) gene, we show in both population and single-nematode assays that C elegans expresses â¼24-h rhythms that can be entrained by light/dark and temperature cycles. We provide evidence that these rhythms are temperature-compensated and can be re-entrained after phase changes of the synchronizing agents. In addition, we demonstrate that light and temperature sensing requires the photoreceptors LITE and GUR-3, and the cyclic nucleotide-gated channel subunit TAX-2. Our results shed light on C elegans circadian biology and demonstrate evolutionarily conserved features in the circadian system of the nematode.
Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/physiology , Circadian Rhythm , Repressor Proteins/genetics , Animals , Caenorhabditis elegans Proteins/metabolism , Gene Expression , Gene Expression Regulation , Genes, Reporter , Ion Channels/metabolism , Luciferases, Firefly/biosynthesis , Luciferases, Firefly/genetics , Luminescent Measurements , Membrane Proteins/metabolism , Repressor Proteins/metabolismABSTRACT
Light modulates plant growth and development to a great extent by regulating gene expression programs. Here, we evaluated the effect of light on alternative splicing (AS) in light-grown Arabidopsis thaliana plants using high-throughput RNA sequencing (RNA-seq). We found that an acute light pulse given in the middle of the night, a treatment that simulates photoperiod lengthening, affected AS events corresponding to 382 genes. Some of these AS events were associated with genes involved in primary metabolism and stress responses, which may help to adjust metabolic and physiological responses to seasonal changes. We also found that several core clock genes showed changes in AS in response to the light treatment, suggesting that light regulation of AS may play a role in clock entrainment. Finally, we found that many light-regulated AS events were associated with genes encoding RNA processing proteins and splicing factors, supporting the idea that light regulates this posttranscriptional regulatory layer through AS regulation of splicing factors. Interestingly, the effect of a red-light pulse on AS of a gene encoding a splicing factor was not impaired in a quintuple phytochrome mutant, providing unequivocal evidence that nonphotosensory photoreceptors control AS in light-grown plants.
ABSTRACT
The circadian clock of plants allows them to cope with daily changes in their environment. This is accomplished by the rhythmic regulation of gene expression, in a process that involves many regulatory steps. One of the key steps involved at the RNA level is post-transcriptional regulation, which ensures a correct control on the different amounts and types of mRNA that will ultimately define the current physiological state of the plant cell. Recent advances in the study of the processes of regulation of pre-mRNA processing, RNA turn-over and surveillance, regulation of translation, function of lncRNAs, biogenesis and function of small RNAs, and the development of bioinformatics tools have helped to vastly expand our understanding of how this regulatory step performs its role. In this work we review the current progress in circadian regulation at the post-transcriptional level research in plants. It is the continuous interaction of all the information flow control post-transcriptional processes that allow a plant to precisely time and predict daily environmental changes.
ABSTRACT
Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.
Subject(s)
Circadian Rhythm Signaling Peptides and Proteins/genetics , Computational Biology/methods , Conserved Sequence/genetics , Nematoda/genetics , Animals , Arabidopsis/genetics , Drosophila melanogaster/genetics , Mice , Models, Statistical , Neurospora crassa/genetics , Species Specificity , Synechococcus/geneticsABSTRACT
Melatonin influences circadian rhythms and seasonal behavioral changes in vertebrates; it is synthesized from serotonin by N-acetylation by arylalkylamine N-acetyltransferase (AA-NAT) and O-methylation by N-acetylserotonin methyltransferase. However, its physiology and function in invertebrate models are less understood. In this work, we studied daily variations in melatonin synthesis and AA-NAT activity in the nematode Caenorhabditis elegans. Under light-dark conditions (LD), a rhythmic pattern of melatonin levels was observed, with higher levels toward the middle of the night, peaking at zeitgeber time (ZT) 18, and with a minimum value around ZT0-6. AA-NAT activity showed a diurnal and circadian fluctuation with higher levels of activity during the early night, both under LD and constant darkness conditions. A peak was found around ZT12 and circadian time (CT) 12. In addition, we investigated whether this nocturnal AA-NAT activity is inhibited by light. Our results show that both white and blue light pulses significantly inhibited AA-NAT activity at ZT18. This work demonstrates the daily fluctuation of melatonin synthesis and AA-NAT activity in the adult nematode C. elegans. In summary, this study takes additional advantage of an extremely useful invertebrate model system, which has only recently been exploited for circadian studies.
Subject(s)
Arylalkylamine N-Acetyltransferase/biosynthesis , Caenorhabditis elegans/metabolism , Circadian Rhythm/physiology , Melatonin/biosynthesis , Animals , Caenorhabditis elegans/geneticsABSTRACT
Circadian rhythms govern a wide variety of physiological and metabolic functions in most organisms through neural networks, hormones and gene expression. In this work, we studied the circadian variation in metabolic variables of adult C. elegans such as food consumption, pharyngeal contractions, defecation and oxygen consumption. Feeding behavior was clearly rhythmic under LD conditions, with a non-significant trend under DD conditions. In addition, a daily and circadian variation in muscle contraction of the pharynx was observed. Oxygen consumption also showed a circadian fluctuation with a maximum in the middle of the night (a peak was found around ZT18/CT18). Furthermore, defecation behavior also showed a daily variation in the N2 strain (wild type). This work demonstrates that in the adult nematode C. elegans metabolic variables vary daily. In summary, our results will allow us to take full advantage of this widely used animal model (including research in genetics, ageing and developmental biology) for studies in Chronobiology.
Subject(s)
Caenorhabditis elegans/physiology , Circadian Rhythm/physiology , Defecation/physiology , Feeding Behavior/physiology , Analysis of Variance , Animals , Larva , Motor Activity/physiology , Oxygen Consumption/physiology , Pharynx/innervationABSTRACT
Abiotic and biotic environmental stressors play a key role in the ecophysiology of most organisms. As the presence and activity of stress-inducing agents vary along the day, organisms that are able to predict these periodic changes are better fit to survive. Caenorhabditis elegans, a soil-dwelling nematode, is subjected to daily changes in its natural environment, and its tolerance to osmotic and oxidative stress varies along the day. Pseudomonas fluorescens strain CHA0 is a soil bacterium that produces a set of secondary metabolites that antagonize phytopathogenic fungi and therefore promote healthy growth of several plant species. Here we show that strain CHA0 is able to affect C. elegans either under growth limiting conditions (i.e., slow-killing) or by rapid paralysis in nutrient replete conditions (fast-killing). Both types of toxicity require the post-transcriptional Gac/Rsm regulatory cascade, and the fast paralytic killing depends strongly on hydrogen cyanide production. The response observed in C. elegans nematodes to fast paralytic killing varies along the day and its sensitivity is higher during the night, at Zeitgeber Time (ZT) 12 (lights off). This behavior correlates well with HCN tolerance, which is higher during the day, at ZT0 (lights on). The innate immune response to P. fluorescens CHA0 might depend on the stress response pathway of C. elegans. The fact that the tolerance varies daily gives further proof of an underlying clock that governs cyclic behavior in C. elegans.
Subject(s)
Caenorhabditis elegans/microbiology , Circadian Clocks , Pseudomonas fluorescens/physiology , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Hydrogen Cyanide/metabolism , Pseudomonas fluorescens/pathogenicityABSTRACT
Circadian rhythms are driven by endogenous biological clocks and are synchronized to environmental cues. The chronobiological study of Caenorhabditis elegans, an extensively used animal model for developmental and genetic research, might provide fundamental information about the basis of circadian rhythmicity in eukaryotes, due to its ease of use and manipulations, as well as availability of genetic data and mutant strains. The aim of this study is to fully characterize the circadian rhythm of locomotor activity in C. elegans, as well as a means for genetic screening in this nematode and the identification of circadian mutants. We have developed an infrared method to measure locomotor activity in C. elegans and found that, under constant conditions, although inter-individual variability is present, circadian periodicity shows a population distribution of periods centered at 23.9+/-0.4 h and is temperature-compensated. Locomotor activity is entrainable by light-dark cycles and by low-amplitude temperature cycles, peaking around the night-day transition and day, respectively. In addition, lin-42(mg152) or lin-42(n1089) mutants (bearing a mutation in the lin-42 gene, homolog to the per gene) exhibit a significantly longer circadian period of 25.2+/-0.4 h or 25.6+/-0.5 h, respectively. Our results represent a complete description of the locomotor activity rhythm in C. elegans, with a methodology that allowed us to uncover three of the key features of circadian systems: entrainment, free-running and temperature compensation. In addition, abnormal circadian periods in clock mutants suggest a common molecular machinery responsible for circadian rhythmicity. Our analysis of circadian rhythmicity in C. elegans opens the possibility for further screening for circadian mutations in this species.
Subject(s)
Biological Clocks , Circadian Rhythm , Animals , Animals, Genetically Modified , Body Temperature , Caenorhabditis elegans , Drosophila melanogaster , Light , Models, Biological , Motor Activity , Movement , Mutation , Periodicity , Temperature , Time FactorsABSTRACT
Circadian rhythms control several behaviors through neural networks, hormones and gene expression. One of these outputs in invertebrates, vertebrates and plants is the stress resistance behavior. In this work, we studied the circadian variation in abiotic stress resistance of adult C. elegans as well as the genetic mechanisms that underlie such behavior. Measuring the stress resistance by tap response behavior we found a rhythm in response to osmotic (NaCl LC50 = 340 mM) and oxidative (H2O2 LC50 = 50 mM) shocks, with a minimum at ZT0 (i.e., lights off) and ZT12 (lights on), respectively. In addition, the expression of glutathione peroxidase (C11E4.1) and glycerol-3-phosphate dehydrogenase (gpdh-1) (genes related to the control of stress responses) also showed a circadian fluctuation in basal levels with a peak at night. Moreover, in the mutant osr-1 (AM1 strain), a negative regulator of the gpdh-1 pathway, the osmotic resistance rhythms were masked at 350 mM but reappeared when the strain was treated with a higher NaCl concentration. This work demonstrates for the first time that in the adult nematode, C. elegans stress responses vary daily, and provides evidence of an underlying rhythmic gene expression that governs these behaviors.