Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Neurology ; 103(1): e209543, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870443

ABSTRACT

BACKGROUND AND OBJECTIVES: Cortical lesions contribute to disability in multiple sclerosis (MS), but their impact on regional neurotransmitter levels remains to be clarified. We tested the hypothesis that cortical lesions are associated with regional glutamate and gamma-aminobutyric acid (GABA) concentrations within the affected cortical region. METHODS: In this cross-sectional study, we used structural 7T MRI to segment cortical lesions and 7T proton MR-spectroscopy of the bilateral sensorimotor hand areas to quantify regional GABA, glutamate, N-acetylaspartate, and myoinositol concentrations in patients with MS (inclusion criteria: diagnosis of relapsing-remitting [RR] or secondary progressive MS [SPMS]; age 18-80 years) and age and sex-matched healthy controls. Data were collected at a single center between August 2018 and September 2020. Linear mixed-effects models were used to test for associations between metabolite concentrations and cortical lesion volumes within the same MR-spectroscopy voxel. RESULTS: Forty-seven patients with MS (34 RRMS, 13 SPMS; 45.1 ± 12.5 years; 31 women) and 23 healthy controls (44.4 ± 13 years, 15 women) were studied. In patients, higher regional glutamate and lower regional GABA concentrations were associated with larger cortical lesion volume within the MR-spectroscopy voxel [glutamate: 0.61 (95% CI 0.19-1.03) log(mm3), p = 0.005, GABA: -0.71 (-1.24 to -0.18) log(mm3), p = 0.01]. In addition, lower N-acetylaspartate levels [-0.37 (-0.67 to -0.07) log(mm3), p = 0.016] and higher myoinositol levels [0.48 (0.03-0.93) log(mm3), p = 0.037] were associated with a larger regional cortical lesion volume. Furthermore, glutamate concentrations were reduced in patients with SPMS compared with healthy participants [-0.75 (-1.3 to -0.19) mM, p = 0.005] and patients with RRMS [-0.55 (-1.07 to -0.02) mM, p = 0.04]. N-acetylaspartate levels were lower in both patients with RRMS [-0.81 (-1.39 to -0.24) mM, p = 0.003] and SPMS [-1.31 (-2.07 to -0.54) mM, p < 0.001] when compared with healthy controls. Creatine-normalized N-acetylaspartate levels were associated with performance in the 9-hole peg test of the contralateral hand [-0.004 (-0.007 to -0.002) log(s), p = 0.002], and reduced mean creatine-normalized glutamate was associated with increased Expanded Disability Status Scale (R = -0.39, p = 0.02). DISCUSSION: Cortical lesions are associated with local increases in glutamate and a reduction in GABA concentration within the lesional or perilesional tissue. Further studies are needed to investigate the causal relationship between cortical lesions and changes in neurotransmitter concentrations.


Subject(s)
Aspartic Acid , Cerebral Cortex , Glutamic Acid , Inositol , gamma-Aminobutyric Acid , Humans , Middle Aged , Female , Male , Adult , Inositol/metabolism , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Glutamic Acid/metabolism , gamma-Aminobutyric Acid/metabolism , Cross-Sectional Studies , Cerebral Cortex/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Aged , Multiple Sclerosis/metabolism , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Multiple Sclerosis, Chronic Progressive/metabolism , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/metabolism , Multiple Sclerosis, Relapsing-Remitting/pathology , Young Adult , Proton Magnetic Resonance Spectroscopy
2.
Clin Immunol ; 264: 110262, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788886

ABSTRACT

Follicular helper T (Tfh) cells and their interplay with B cells likely contribute to the pathogenesis of relapsing-remitting multiple sclerosis (RRMS). Tfh cells are enriched in cerebrospinal fluid (CSF) in RRMS, but effects of anti-CD20 therapy are unknown. We investigated Tfh cells in controls, untreated and anti-CD20-treated patients with RRMS using flow cytometry. CSF Tfh cells were increased in untreated patients. Compared to paired blood samples, CD25- Tfh cells were enriched in CSF in RRMS, but not in controls. Contrast-enhancing brain MRI lesions and IgG index correlated with CSF CD25- Tfh cell frequency in untreated patients with RRMS. Anti-CD20 therapy reduced the numbers of circulating PD1+ Tfh cells and CD25- Tfh cells, and the frequency of CSF CD25- Tfh cells. The study suggests that CD25- Tfh cells are recruited to the CSF in RRMS, associated with focal inflammation, and are reduced by anti-CD20 therapy.


Subject(s)
Antigens, CD20 , Multiple Sclerosis, Relapsing-Remitting , T Follicular Helper Cells , Humans , Female , Adult , Male , Multiple Sclerosis, Relapsing-Remitting/cerebrospinal fluid , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/blood , Middle Aged , Antigens, CD20/immunology , T Follicular Helper Cells/immunology , T-Lymphocytes, Helper-Inducer/immunology , Rituximab/therapeutic use , T-Lymphocyte Subsets/immunology
3.
Mult Scler ; 30(7): 847-856, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646949

ABSTRACT

BACKGROUND: This study investigates clinical and biomarker differences between standard interval dosing (SID) and extended interval dosing (EID) of ocrelizumab therapy in multiple sclerosis (MS). METHODS: This is a prospective, double-arm, open-label, multi-center study in Denmark. Participants diagnosed with MS on ocrelizumab therapy >12 months were included (n = 184). Clinical, radiological, and blood-based biomarker outcomes were evaluated. MRI disease activity, relapses, worsening of neurostatus, and No Evidence of Disease Activity-3 (NEDA-3) were used as a combined endpoint. RESULTS: Out of 184 participants, 107 participants received EID (58.2%), whereas 77 participants received SID (41.8%). The average extension was 9 weeks with a maximum of 78 weeks. When comparing EID to SID, we found higher levels of B-cells, lower serum concentrations of ocrelizumab, and similar levels of age-adjusted NFL and GFAP in the two groups. No difference in NEDA-3 between EID and SID was demonstrated (hazard ratio: 1.174, p = 0.69). Higher levels of NFL were identified in participants with disease activity. Body mass index correlated with levels of ocrelizumab and B-cells. CONCLUSION: Extending one treatment interval of ocrelizumab on average 9 weeks and up to 78 weeks did not result in clinical, radiological, or biomarker evidence of worsening compared with SID.


Subject(s)
Antibodies, Monoclonal, Humanized , Immunologic Factors , Humans , Female , Antibodies, Monoclonal, Humanized/administration & dosage , Male , Adult , Middle Aged , Immunologic Factors/administration & dosage , Prospective Studies , Biomarkers/blood , Multiple Sclerosis/drug therapy , Treatment Outcome , Magnetic Resonance Imaging , Drug Administration Schedule , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/blood
4.
Mult Scler ; : 13524585241235542, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424745

ABSTRACT

OBJECTIVE: To describe a case of neoehrlichiosis, an emerging opportunistic tick-borne infection, in a patient with multiple sclerosis (MS) treated with ocrelizumab. METHODS: This is a case study. RESULTS: Our patient developed clinical infection over several months while on ocrelizumab and was ultimately diagnosed with neoehrlichiosis, caused by the bacteria Neoehrlichia mikurensis. Resolution of symptoms began within a few days after the initiation of antibiotic treatment. CONCLUSION: We describe the first probable case of ocrelizumab-associated neoehrlichiosis in a patient with MS. Clinicians should be aware of this potentially debilitating and life-threatening infection in patients receiving CD20-depleting therapy.

5.
Ann Clin Transl Neurol ; 11(4): 926-937, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38332555

ABSTRACT

OBJECTIVES: B cells are important in the pathogenesis of multiple sclerosis. It is yet unknown which subsets may be involved, but atypical B cells have been proposed as mediators of autoimmunity. In this study, we investigated differences in B-cell subsets between controls and patients with untreated and anti-CD20-treated multiple sclerosis. METHODS: We recruited 155 participants for an exploratory cohort comprising peripheral blood and cerebrospinal fluid, and a validation cohort comprising peripheral blood. Flow cytometry was used to characterize B-cell phenotypes and effector functions of CD11c+ atypical B cells. RESULTS: There were no differences in circulating B cells between controls and untreated multiple sclerosis. As expected, anti-CD20-treated patients had a markedly lower B-cell count. Of B cells remaining after treatment, we observed higher proportions of CD11c+ B cells and plasmablasts. CD11c+ B cells were expanded in cerebrospinal fluid compared to peripheral blood in controls and untreated multiple sclerosis. Surprisingly, the proportion of CD11c+ cerebrospinal fluid B cells was higher in controls and after anti-CD20 therapy than in untreated multiple sclerosis. Apart from the presence of plasmablasts, the cerebrospinal fluid B-cell composition after anti-CD20 therapy resembled that of controls. CD11c+ B cells demonstrated a high potential for both proinflammatory and regulatory cytokine production. INTERPRETATION: The study demonstrates that CD11c+ B cells and plasmablasts are less efficiently depleted by anti-CD20 therapy, and that CD11c+ B cells comprise a phenotypically and functionally distinct, albeit heterogenous, B-cell subset with the capacity of exerting both proinflammatory and regulatory functions.


Subject(s)
B-Lymphocyte Subsets , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis/drug therapy , B-Lymphocytes , Plasma Cells
6.
J Neuroimmunol ; 381: 578128, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37321014

ABSTRACT

Cerebrospinal fluid (CSF) soluble CD27 (sCD27) is a sensitive biomarker of intrathecal inflammation. Although generally considered a biomarker of T cell activation, CSF sCD27 has been shown to correlate with biomarkers of B cell activity in multiple sclerosis. We analyzed CSF from 40 patients with relapsing-remitting multiple sclerosis (RRMS) and nine symptomatic controls using flow cytometry and multiplex electrochemiluminescence immunoassays. CSF sCD27 levels were increased in RRMS and correlated with IgG index, soluble B cell maturation antigen, cell count, B cell frequency and CD8+ T cell frequency. We provide new data indicating that CSF sCD27 is associated with CD8+ T cells and B cells in RRMS.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Tumor Necrosis Factor Receptor Superfamily, Member 7 , Humans , B-Lymphocytes , Biomarkers/cerebrospinal fluid , CD8-Positive T-Lymphocytes , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Multiple Sclerosis, Relapsing-Remitting/cerebrospinal fluid , Tumor Necrosis Factor Receptor Superfamily, Member 7/chemistry , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
7.
Mult Scler Relat Disord ; 68: 104246, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36279600

ABSTRACT

BACKGROUND: Ofatumumab is an anti-CD20 monoclonal antibody approved for subcutaneous administration for the treatment of relapsing multiple sclerosis (MS), but intravenously administered ofatumumab has been investigated in a phase 2 trial and used off-label. The objective of the present study was to assess disease activity and side effects in relation to longer-term intravenous ofatumumab treatment of MS and related disorders. METHODS: We conducted a retrospective study of patients treated off-label with intravenous ofatumumab for MS, neuromyelitis optica spectrum disease (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) at the Danish Multiple Sclerosis Center. Data was retrieved from the Danish Multiple Sclerosis Registry and through medical chart review. RESULTS: Fifty patients were identified with a median treatment duration of 2.2 years. Annualized relapse rate decreased from 1.03 at baseline to 0.38 during ofatumumab treatment. At 24 months, the probability of having experienced a relapse was 55% and confirmed disability worsening 7%. Frequency of infusion-related reactions was 86% during the first infusion and 42% during the last infusion. Six experienced infections requiring hospitalization. CONCLUSION: Our data indicate a reduction of relapse frequency, stabilization of disability worsening and an acceptable safety profile, although we observed a higher frequency of infusion reactions compared to data from other intravenously administered anti-CD20 monoclonal antibodies. The study supports a class effect of anti-CD20 monoclonal antibodies and the hypothesis that complement activation may be associated to a higher frequency of infusion related reactions.


Subject(s)
Antineoplastic Agents , Multiple Sclerosis , Neuromyelitis Optica , Humans , Retrospective Studies , Antibodies, Monoclonal/adverse effects , Neuromyelitis Optica/drug therapy , Administration, Intravenous , Antineoplastic Agents/therapeutic use
9.
Pract Neurol ; 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35863880

ABSTRACT

A 23-year-old man presented with right eye blurred vision; he was diagnosed with acute posterior multifocal placoid pigment epitheliopathy (APMPPE), and his symptoms resolved with prednisolone. Two months later, he developed a right arm weakness that resolved after 3 weeks. MR scan of brain identified changes suggesting multiple sclerosis, with four hyperintense FLAIR lesions; there was contrast enhancement of two lesions and no diffusion restriction. Cerebrospinal fluid showed mononuclear pleocytosis. We eventually diagnosed these as APMPPE-associated CNS lesions. APMPPE is a rare inflammatory chorioretinopathy that rarely can resemble multiple sclerosis clinically and radiologically.

10.
Brain ; 145(10): 3522-3535, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35653498

ABSTRACT

Cortical lesions constitute a key manifestation of multiple sclerosis and contribute to clinical disability and cognitive impairment. Yet it is unknown whether local cortical lesions and cortical lesion subtypes contribute to domain-specific impairments attributable to the function of the lesioned cortex. In this cross-sectional study, we assessed how cortical lesions in the primary sensorimotor hand area relate to corticomotor physiology and sensorimotor function of the contralateral hand. Fifty relapse-free patients with relapsing-remitting or secondary-progressive multiple sclerosis and 28 healthy age- and sex-matched participants underwent whole-brain 7 T MRI to map cortical lesions. Brain scans were also used to estimate normalized brain volume, pericentral cortical thickness, white matter lesion fraction of the corticospinal tract, infratentorial lesion volume and the cross-sectional area of the upper cervical spinal cord. We tested sensorimotor hand function and calculated a motor and sensory composite score for each hand. In 37 patients and 20 healthy controls, we measured maximal motor-evoked potential amplitude, resting motor threshold and corticomotor conduction time with transcranial magnetic stimulation and the N20 latency from somatosensory-evoked potentials. Patients showed at least one cortical lesion in the primary sensorimotor hand area in 47 of 100 hemispheres. The presence of a lesion was associated with worse contralateral sensory (P = 0.014) and motor (P = 0.009) composite scores. Transcranial magnetic stimulation of a lesion-positive primary sensorimotor hand area revealed a decreased maximal motor-evoked potential amplitude (P < 0.001) and delayed corticomotor conduction (P = 0.002) relative to a lesion-negative primary sensorimotor hand area. Stepwise mixed linear regressions showed that the presence of a primary sensorimotor hand area lesion, higher white-matter lesion fraction of the corticospinal tract, reduced spinal cord cross-sectional area and higher infratentorial lesion volume were associated with reduced contralateral motor hand function. Cortical lesions in the primary sensorimotor hand area, spinal cord cross-sectional area and normalized brain volume were also associated with smaller maximal motor-evoked potential amplitude and longer corticomotor conduction times. The effect of cortical lesions on sensory function was no longer significant when controlling for MRI-based covariates. Lastly, we found that intracortical and subpial lesions had the largest effect on reduced motor hand function, intracortical lesions on reduced motor-evoked potential amplitude and leucocortical lesions on delayed corticomotor conduction. Together, this comprehensive multilevel assessment of sensorimotor brain damage shows that the presence of a cortical lesion in the primary sensorimotor hand area is associated with impaired corticomotor function of the hand, after accounting for damage at the subcortical level. The results also provide preliminary evidence that cortical lesion types may affect the various facets of corticomotor function differentially.


Subject(s)
Multiple Sclerosis , Sensorimotor Cortex , Humans , Multiple Sclerosis/pathology , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Evoked Potentials, Motor , Pyramidal Tracts/pathology , Sensorimotor Cortex/diagnostic imaging
11.
Article in English | MEDLINE | ID: mdl-34429340

ABSTRACT

BACKGROUND AND OBJECTIVE: To study whether dimethyl fumarate is superior to placebo in decreasing CSF concentrations of neurofilament light chain (NFL) in patients with primary progressive MS (PPMS). METHODS: In the double-blind, placebo-controlled phase 2 study dimethyl FUMArate treatment in Progressive Multiple Sclerosis (FUMAPMS), patients with PPMS were randomly assigned to treatment with 240 mg dimethyl fumarate or placebo in a 1:1 ratio for 48 weeks. The primary endpoint was change in concentration of NFL in the CSF. Secondary endpoints included other CSF biomarkers and clinical and MRI measures. Efficacy was evaluated for the full data set by multiple imputations to account for missing data. Safety was assessed for the full data set. RESULTS: Fifty-four patients (mean age 54.9 years [SD 6.1], median Expanded Disability Status Scale 4.0 [nterquartile range 4.0-6.0], disease duration 14.1 [SD 9.4], and 21 [39%] female) were randomized to either placebo (n = 27) or dimethyl fumarate (n = 27) therapy. At screening CSF concentrations, adjusted for age and sex, of NFL, myelin basic protein (MBP), soluble CD27, chitinase 3-like 1, and B-cell maturation antigen were higher than in a group of symptomatic controls. Twenty-six patients (96%) in the dimethyl fumarate group and 24 patients (89%) in the placebo group completed the randomized phase. Mean change in CSF concentrations of NFL did not differ between groups (mean difference 99 ng/L; 95% CI -292 to 491 ng/L). MBP in CSF decreased in the treatment group (-182 ng/L, 95% CI -323 to -41 ng/L compared with placebo). The difference observed in the multiple imputation data set was not significant in a per protocol analysis. This was nominally significant in the multiple imputation data set but not in the per protocol analysis This was not found in the per protocol analysis Other secondary and tertiary outcomes were not affected. Various infections, lymphopenia, flushing, and gastrointestinal side effects were more frequent in the dimethyl fumarate group. Serious adverse events were similar between groups. DISCUSSION: Dimethyl fumarate treatment for 48 weeks had no effect on any of the investigated efficacy measures in patients with PPMS. We did not observe adverse events not anticipated for dimethyl fumarate treatment. TRIAL REGISTRATION INFORMATION: Clinicaltrials.gov identifier NCT02959658. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for patients with PPMS, dimethyl fumarate treatment has no effect on CSF NFL levels compared with placebo treatment.


Subject(s)
Dimethyl Fumarate/pharmacology , Immunosuppressive Agents/pharmacology , Multiple Sclerosis, Chronic Progressive/drug therapy , Neurofilament Proteins/cerebrospinal fluid , Adult , Female , Humans , Male , Middle Aged
12.
Mult Scler Relat Disord ; 52: 102987, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33984651

ABSTRACT

BACKGROUND: Natalizumab treatment increases the frequencies of B cells in blood but reduces IgG in blood and CSF. Plasmablasts are important in the production of IgG, and the development of plasmablasts is CD49d dependent. OBJECTIVE: We hypothesized that natalizumab treatment affects the development of plasmablasts. METHODS: We retrospectively analyzed frequencies and absolute counts of B cell subsets by flow cytometry from a longitudinal cohort of 9 progressive multiple sclerosis (MS) patients treated with natalizumab for 60 weeks, and a cross-sectional relapsing-remitting MS (RRMS) cohort with 17 untreated and 37 treated with natalizumab (17 stable and 20 unstable patients with relapse activity). Additionally, CD49d expression on B cell subsets was examined in 10 healthy controls, and blood and cerebrospinal fluid (CSF) frequencies of B cell subsets were quantified in untreated and natalizumab treated RRMS patients. RESULTS: In progressive MS, levels of IgG decreased in plasma (p<0.001) from baseline to 60 weeks follow-up. In the progressive MS and RRMS cohorts we observed that natalizumab treatment significantly increased the frequency of B cells (p=0.004; p<0.0001) and several B cell subsets, most pronounced for memory B cell subsets (p=0.0001; p<0.0001), while there was a decrease in plasmablast frequency (p=0.008; p=0.008). In both progressive MS and RRMS the absolute cell counts of B cells increased (p=0.004; p<0.001), which was explained by a significant increase in all subsets, except for plasmablasts. Furthermore, we found decreased memory B cell counts in unstable compared to stable natalizumab-treated patients (p=0.02). The expression of CD49d was higher on plasmablasts compared to other B cell subsets (p<0.0001). In CSF, plasmablasts could not be detected in patients treated with natalizumab, in contrast to an increased frequency in untreated RRMS patients. CONCLUSION: We confirm previous studies showing that natalizumab increases circulating number of B cells, particularly memory cells, concomitant with a decrease in plasma IgG concentrations. Moreover, we demonstrate in two separate cohorts that natalizumab treatment markedly decreases frequencies of plasmablasts while the absolute number is stable. Additionally, plasmablasts have high expression of CD49d, and plasmablasts could not be detected in the CSF of natalizumab-treated patients. Finally, memory B cells were found to be reduced in unstable natalizumab-treated patients, which could possibly indicate increased recruitment to the CNS.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , B-Lymphocytes , Cross-Sectional Studies , Humans , Natalizumab , Retrospective Studies
13.
Mult Scler Relat Disord ; 45: 102391, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32679525

ABSTRACT

BACKGROUND: Several roles for biomarkers in multiple sclerosis (MS) exist, including aiding in the diagnosis of MS, predicting disease activity or progression, and defining individuals who may be responsive to specific treatments. Cerebrospinal fluid (CSF) concentrations of soluble B cell maturation antigen (sBCMA) and soluble CD27 (sCD27) have been shown to be sensitive biomarkers of inflammation in MS and are thought to reflect B and T cell activity, respectively. Furthermore, chitinase 3-like 1 (CHI3L1) and soluble CD14 (sCD14) have been suggested as measures of innate immune cell activity in MS. In this study we sought to validate measurements of these CSF biomarkers of inflammation using multiplex bead-based immunoassays. METHODS: By using commercially available multiplex bead-based assays, concentrations of sBCMA, sCD27, sCD14 and CHI3L1 were determined in CSF from 22 patients with either untreated clinically isolated syndromes (CIS) or relapsing-remitting MS (RRMS), 13 patients with RRMS treated with either natalizumab or alemtuzumab, and 35 symptomatic controls (SC). RESULTS: Increased CSF concentrations of sBCMA, sCD27 and CHI3L1 were observed in untreated MS patients compared to symptomatic controls (all p < 0.001). Concentrations of sBCMA (p = 0.02) and sCD27 (p = 0.0003) were higher in treated MS patients than in SC, and levels of sBCMA (p = 0.02) and sCD27 (p = 0.01) were even higher in untreated compared to treated patients. sCD14 levels did not differ between the groups. Levels of sBCMA and sCD27 correlated strongly with each other (Spearman's rho: 0.98, p < 0.0001) as well as with the IgG index (Spearman's rho: 0.91, p < 0.0001 and 0.90, p < 0.0001, respectively). ROC curve analysis showed a high discriminatory potential for sBCMA and sCD27 with areas under the curve of 0.88 and 0.93, respectively. CONCLUSION: We confirm reports of elevated concentrations of sBCMA, sCD27 and CHI3L1 in CSF from untreated MS patients compared to SC. sBCMA and sCD27 levels were elevated in both treated and untreated MS patients compared to SC, but highest in untreated patients. Finally, CSF concentrations of sBCMA, sCD27 and the IgG index correlated strongly, suggesting that the cellular source of sCD27 and sBCMA includes memory B cells, plasmablasts and plasma cells.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Biomarkers , Humans , Multiple Sclerosis/diagnosis , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Natalizumab
14.
Mult Scler ; 25(7): 937-946, 2019 06.
Article in English | MEDLINE | ID: mdl-29775134

ABSTRACT

BACKGROUND: Development of treatments for progressive multiple sclerosis (MS) is challenged by the lack of sensitive and treatment-responsive biomarkers of intrathecal inflammation. OBJECTIVE: To validate the responsiveness of cerebrospinal fluid (CSF) inflammatory biomarkers to treatment with natalizumab and methylprednisolone in progressive MS and to examine the relationship between CSF inflammatory and tissue damage biomarkers. METHODS: CSF samples from two open-label phase II trials of natalizumab and methylprednisolone in primary and secondary progressive MS. CSF concentrations of 20 inflammatory biomarkers and CSF biomarkers of axonal damage (neurofilament light chain (NFL)) and demyelination were analysed using electrochemiluminescent assay and enzyme-linked immunosorbent assay (ELISA). RESULTS: In all, 17 natalizumab- and 23 methylprednisolone-treated patients had paired CSF samples. CSF sCD27 displayed superior standardised response means and highly significant decreases during both natalizumab and methylprednisolone treatment; however, post-treatment levels remained above healthy donor reference levels. Correlation analyses of CSF inflammatory biomarkers and NFL before, during and after treatment demonstrated that CSF sCD27 consistently correlates with NFL. CONCLUSION: These findings validate CSF sCD27 as a responsive and sensitive biomarker of intrathecal inflammation in progressive MS, capturing residual inflammation after treatment. Importantly, CSF sCD27 correlates with NFL, consistent with residual inflammation after anti-inflammatory treatment being associated with axonal damage.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Axons/pathology , Immunologic Factors/pharmacology , Inflammation/cerebrospinal fluid , Multiple Sclerosis, Chronic Progressive/cerebrospinal fluid , Multiple Sclerosis, Chronic Progressive/drug therapy , Neurofilament Proteins/cerebrospinal fluid , Outcome Assessment, Health Care , Adult , Biomarkers/cerebrospinal fluid , Female , Follow-Up Studies , Humans , Male , Methylprednisolone/pharmacology , Middle Aged , Natalizumab/pharmacology
15.
J Autoimmun ; 97: 114-121, 2019 02.
Article in English | MEDLINE | ID: mdl-30245027

ABSTRACT

Smoking is a risk factor for the development and progression of multiple sclerosis (MS); however, the pathogenic effects of smoking are poorly understood. We studied the smoking-associated chemokine receptor-like molecule GPR15 in relation to relapsing-remitting MS (RRMS). Using microarray analyses and qPCR we found elevated GPR15 in blood cells from smokers, and increased GPR15 expression in RRMS. By flow cytometry we detected increased frequencies of GPR15 expressing T and B cells in smokers, but no difference between patients with RRMS and healthy controls. However, after cell culture with the autoantigens myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein, frequencies of MBP-reactive and non-proliferating GPR15+CD4+ T cells were increased in patients with RRMS compared with healthy controls. GPR15+CD4+ T cells produced IL-17 and were enriched in the cerebrospinal fluid (CSF). Furthermore, in the CSF of patients with RRMS, GPR15+ T cells were associated with CCR6+CXCR3+/CCR6-CXCR3+ phenotypes and correlated positively with concentrations of the newly identified GPR15-ligand (GPR15L), myelin degradation and disability. In conclusion, we have identified a proinflammatory cell type linking smoking with pathogenic immune cell functions in RRMS.


Subject(s)
Multiple Sclerosis/etiology , Multiple Sclerosis/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , Smokers , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Biomarkers , Cytokines/metabolism , Disease Susceptibility , Female , Gene Expression , Humans , Immunophenotyping , Lymphocyte Count , Magnetic Resonance Imaging , Male , Multiple Sclerosis/diagnosis , Receptors, G-Protein-Coupled/genetics , Receptors, Peptide/genetics , Th17 Cells/immunology , Th17 Cells/metabolism
16.
Brain Behav ; 8(2): e00875, 2018 02.
Article in English | MEDLINE | ID: mdl-29484253

ABSTRACT

Background: Patients with progressive multiple sclerosis (MS) often have cognitive impairment in addition to physical impairment. The burden of cognitive and physical impairment progresses over time, and may be major determinants of quality of life. The aim of this study was to assess to which degree quality of life correlates with physical and cognitive function in progressive MS. Methods: This is a retrospective study of 52 patients with primary progressive (N = 18) and secondary progressive MS (N = 34). Physical disability was assessed using the Expanded Disability Status Scale, Timed 25 Foot Walk (T25FW) test and 9-Hole Peg Test (9HPT). Cognitive function was assessed using Symbol Digit Modalities Test (SDMT), Paced Auditory Serial Addition Test, and Trail Making Test B (TRAIL-B). In addition, quality of life was assessed by the Short Form 36 (SF-36) questionnaire. Results: Only measures of cognitive function correlated with the overall SF-36 quality of life score and the Mental Component Summary score from the SF-36. The only physical measure that correlated with a measure of quality of life was T25FW test, which correlated with the Physical Component Summary from the SF-36. We found no other significant correlations between the measures of cognitive function and the overall physical measures but interestingly, we found a possible relationship between the 9HPT score for the nondominant hand and the SDMT and TRAIL-B. Conclusion: Our findings support inclusion of measures of cognitive function in the assessment of patients with progressive MS as these correlated closer with quality of life than measures of physical impairment.


Subject(s)
Cognition , Cognitive Dysfunction , Cost of Illness , Multiple Sclerosis , Quality of Life , Adult , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Cognitive Dysfunction/psychology , Denmark , Disability Evaluation , Disease Progression , Female , Humans , Male , Middle Aged , Multiple Sclerosis/complications , Multiple Sclerosis/physiopathology , Multiple Sclerosis/psychology , Neuropsychological Tests , Retrospective Studies
17.
Mult Scler ; 23(13): 1727-1735, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28831853

ABSTRACT

BACKGROUND: It is unknown whether disease activity according to consensus criteria (magnetic resonance imaging activity or clinical relapses) associate with cerebrospinal fluid (CSF) changes in progressive multiple sclerosis (MS). OBJECTIVE: To compare CSF biomarkers in active and inactive progressive MS according to consensus criteria. METHODS: Neurofilament light chain (NFL), myelin basic protein (MBP), IgG-index, chitinase-3-like-1 (CHI3L1), matrix metalloproteinase-9 (MMP-9), chemokine CXCL13, terminal complement complex, leukocyte counts and nitric oxide metabolites were measured in primary ( n = 26) and secondary progressive MS ( n = 26) and healthy controls ( n = 24). RESULTS: Progressive MS patients had higher CSF cell counts, IgG-index, CHI3L1, MMP-9, CXCL13, NFL and MBP concentrations. Active patients were younger and had higher NFL, CXCL13 and MMP-9 concentrations than inactive patients. Patients with active disease according to consensus criteria or detectable CXCL13 or MMP-9 in CSF were defined as having combined active progressive MS. These patients had increased CSF cell counts, IgG-index and MBP, NFL and CHI3L1 concentrations. Combined inactive patients only had increased IgG-index and MBP concentrations. CONCLUSION: Patients with combined active progressive MS show evidence of inflammation, demyelination and neuronal/axonal damage, whereas the remaining patients mainly show evidence of active demyelination. This challenges the idea that neurodegeneration independent of inflammation is crucial in disease progression.


Subject(s)
Multiple Sclerosis, Chronic Progressive/cerebrospinal fluid , Multiple Sclerosis, Chronic Progressive/immunology , Multiple Sclerosis, Chronic Progressive/pathology , Adult , Biomarkers/cerebrospinal fluid , Disease Progression , Female , Humans , Male , Middle Aged
18.
J Leukoc Biol ; 101(5): 1211-1220, 2017 05.
Article in English | MEDLINE | ID: mdl-28179539

ABSTRACT

Upon chronic cigarette smoke exposure, inhaled antigens and irritants cause altered lung immune homeostasis. Circulating immune cells are affected, and smoking is associated with an increased risk of developing various disorders, including multiple sclerosis (MS). This study was conducted to determine the impact of smoking on circulating immune cell subsets. Furthermore, we determined whether any smoking-associated changes were related to MS. With the use of flow cytometry, CFSE assays, and ELISpot assays, we analyzed circulating immune cell phenotypes and quantified antigen-induced proliferation and cytokine secretion in smokers and nonsmokers in a cohort of 100 healthy individuals (HI). In addition, we analyzed immune cell subsets associated with smoking in 2 independent cohorts of patients with MS. In HI smokers compared with nonsmokers, we found increased blood cell counts of granulocytes, monocytes, and lymphocytes. These cells were not more proinflammatory, autoreactive, or EBV reactive compared with cells from nonsmokers. Phenotypic differences were seen in plasmacytoid dendritic cells (pDCs) and CD8+ T cells as higher percentages of ICOS ligand (ICOSL)+ pDCs and lower percentages of CD26hiCD161hi CD8+ T cells and CCR6+ CD8+ T cells in smokers compared with nonsmokers. In supplemental analyses, we showed that CD26hiCD161hi CD8+ T cells were mainly mucosal-associated invariant T cells (MAITs). Comparable frequencies of ICOSL+ pDCs, CCR6+ CD8+ T cells, and CD26hiCD161hi CD8+ T cells were found between HI and MS patients who were nonsmokers. Our findings suggest general proinflammatory effects from smoking combined with skewing of specific cell populations in HI and MS patients. The function of these cell populations needs further investigation.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Dipeptidyl Peptidase 4/immunology , Multiple Sclerosis/immunology , NK Cell Lectin-Like Receptor Subfamily B/immunology , Smoking/immunology , Adult , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Count , Cohort Studies , Cotinine/blood , Cotinine/pharmacology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/pathology , Dipeptidyl Peptidase 4/genetics , Female , Gene Expression Regulation/immunology , Granulocytes/drug effects , Granulocytes/immunology , Granulocytes/pathology , Humans , Immunophenotyping , Inducible T-Cell Co-Stimulator Ligand/genetics , Inducible T-Cell Co-Stimulator Ligand/immunology , Male , Middle Aged , Monocytes/drug effects , Monocytes/immunology , Monocytes/pathology , Multiple Sclerosis/etiology , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , NK Cell Lectin-Like Receptor Subfamily B/genetics , Primary Cell Culture , Smoking/adverse effects , Smoking/genetics , Smoking/pathology
19.
Mult Scler ; 23(5): 675-685, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27481206

ABSTRACT

BACKGROUND: Erythropoietin (EPO) is a part of an endogenous neuroprotective system in the brain and may address pathophysiological mechanisms in progressive multiple sclerosis (MS). OBJECTIVE: To evaluate a treatment effect of EPO on progressive MS. METHODS: This was a single-center, randomized, double-blind, placebo-controlled phase 2 trial, in which 52 patients with secondary or primary progressive MS were allocated to treatment with recombinant EPO (48,000 IU) or placebo, administered intravenously 17 times during 24 weeks. Patients had an Expanded Disability Status Score (EDSS) from 4 to 6.5 and clinical progression without relapses in the 2 preceding years. The primary outcome was the change in a composite measure of maximum gait distance, hand dexterity, and cognition from baseline to 24 weeks. RESULTS: A total of 50 patients completed the study. Venesection was performed often but no thromboembolic events occurred. We found no difference in the primary outcome between the EPO and the placebo group using the intention-to-treat principle ( p = 0.22). None of the secondary outcomes, neither clinical nor magnetic resonance imaging (MRI) measures showed any significant differences. CONCLUSION: This study provides class II evidence that treatment with high-dose EPO is not an effective treatment in patients with moderately advanced progressive MS.


Subject(s)
Brain/drug effects , Erythropoietin/therapeutic use , Multiple Sclerosis/drug therapy , Adult , Brain/pathology , Disability Evaluation , Disease Progression , Double-Blind Method , Erythropoietin/administration & dosage , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Multiple Sclerosis/pathology , Treatment Outcome
20.
Neurol Neuroimmunol Neuroinflamm ; 3(4): e256, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27386506

ABSTRACT

OBJECTIVE: We aimed to investigate the role of oxidative stress in the progression of multiple sclerosis (MS). METHODS: We determined by liquid chromatography-tandem mass spectrometry nonenzymatic (F2-isoprostanes) and enzymatic oxidation products of arachidonic acid (prostaglandin F2α [PGF2α]) in plasma and CSF of 45 controls (other neurologic disease [OND] with no signs of inflammation) and 62 patients with MS. Oxidation products were correlated with disease severity and validated biomarkers of inflammation (chemokine ligand 13; matrix metalloproteinase-9; osteopontin) and axonal damage (neurofilament light protein). RESULTS: Compared with OND controls, plasma concentrations of F2-isoprostanes and PGF2α were significantly lower in patients with progressive disease, and decreased with increasing disability score (Expanded Disability Status Scale). In contrast, CSF concentrations of PGF2α, but not F2-isoprostanes, were significantly higher in patients with progressive disease than OND controls (p < 0.01). The content of PGF2α in CSF increased with disease severity (p = 0.044) and patient age (p = 0.022), although this increase could not be explained by age. CSF PGF2α decreased with natalizumab and methylprednisolone treatment and was unaffected by the use of nonsteroidal anti-inflammatory drug in secondary progressive MS. CSF PGF2α did not associate with validated CSF markers of inflammation and axonal damage that themselves did not associate with the Expanded Disability Status Scale. CONCLUSIONS: Our data suggest that MS progression is associated with low systemic oxidative activity. This may contribute to immune dysregulation with CNS inflammation accompanied by increased local cyclooxygenase-dependent lipid oxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...