Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
JAMA Netw Open ; 7(7): e2422181, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39008302

ABSTRACT

This quality improvement study investigates the association of interruptions during psychedelic therapy with ratings of intensity of experience.


Subject(s)
Hallucinogens , Adult , Female , Humans , Male , Hallucinogens/therapeutic use , Hallucinogens/administration & dosage
2.
Article in English | MEDLINE | ID: mdl-38849218

ABSTRACT

OBJECTIVE: Affective symptoms such as anxiety, low mood, and loneliness are prevalent and highly debilitating symptoms among older adults (OA). Serotonergic psychedelics are currently investigated as novel interventions for affective disorders, yet little is known regarding their effects in OA. We investigated the mental health effects and psychological mechanisms of guided psychedelic group experiences in OA and a matched sample of younger adults (YA). METHODS: Using a prospective observational cohort design, we identified 62 OA (age ≥60 years) and 62 matched YA who completed surveys two weeks before, a day, two weeks, four weeks, and six months after a psychedelic group session. Mixed linear regression analyses were used to investigate longitudinal well-being changes, as well as baseline, acute, and post-acute predictors of change. RESULTS: OA showed post-psychedelic well-being improvements similar to matched YA. Among baseline predictors, presence of a lifetime psychiatric diagnosis was associated with greater well-being increases in OA (B = 6.72, p = .016 at the four-week key-endpoint). Compared to YA, acute subjective psychedelic effects were less intense in OA and did not significantly predict prospective well-being changes. However, relational experiences before and after psychedelic sessions emerged as predictors in OA (r(36) = .37,p = 0.025). CONCLUSIONS: Guided psychedelic group sessions enhance well-being in OA in line with prior naturalistic and controlled studies in YA. Interestingly, acute psychedelic effects in OA are attenuated and less predictive of well-being improvements, with relational experiences related to the group setting playing a more prominent role. Our present findings call for further research on the effects of psychedelics in OA.

3.
Natl Sci Rev ; 11(5): nwae124, 2024 May.
Article in English | MEDLINE | ID: mdl-38778818

ABSTRACT

The human brain is a complex system, whose activity exhibits flexible and continuous reorganization across space and time. The decomposition of whole-brain recordings into harmonic modes has revealed a repertoire of gradient-like activity patterns associated with distinct brain functions. However, the way these activity patterns are expressed over time with their changes in various brain states remains unclear. Here, we investigate healthy participants taking the serotonergic psychedelic N,N-dimethyltryptamine (DMT) with the Harmonic Decomposition of Spacetime (HADES) framework that can characterize how different harmonic modes defined in space are expressed over time. HADES demonstrates significant decreases in contributions across most low-frequency harmonic modes in the DMT-induced brain state. When normalizing the contributions by condition (DMT and non-DMT), we detect a decrease specifically in the second functional harmonic, which represents the uni- to transmodal functional hierarchy of the brain, supporting the leading hypothesis that functional hierarchy is changed in psychedelics. Moreover, HADES' dynamic spacetime measures of fractional occupancy, life time and latent space provide a precise description of the significant changes of the spacetime hierarchical organization of brain activity in the psychedelic state.

4.
Res Sq ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38496492

ABSTRACT

Affective symptoms such as anxiety, low mood, and loneliness are prevalent and highly debilitating symptoms among older adults (OA). Serotonergic psychedelics are novel experimental interventions for affective disorders, yet little is known regarding their effects in OA. Using a prospective cohort design, we identified 62 OA (age ≥ 60 years) and 62 matched younger adults (YA) who completed surveys two weeks before, and one day, two weeks, four weeks, and six months after a guided psychedelic group session in a retreat setting. Mixed linear regression analyses revealed significant well-being improvements in OA and YA, amplified in OA with a history of a psychiatric diagnosis. Compared to YA, acute subjective psychedelic effects were attenuated in OA and did not significantly predict well-being changes. However, a psychosocial measure of Communitas emerged as a predictor in OA, suggesting that the relational components in psychedelic group settings may hold particular value for OA.

5.
bioRxiv ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38464275

ABSTRACT

N,N-Dimethyltryptamine (DMT) is a serotonergic psychedelic, known to rapidly induce short-lasting alterations in conscious experience, characterized by a profound and immersive sense of physical transcendence alongside rich and vivid auditory distortions and visual imagery. Multimodal neuroimaging data paired with dynamic analysis techniques offer a valuable approach for identifying unique signatures of brain activity - and linked autonomic physiology - naturally unfolding during the altered state of consciousness induced by DMT. We leveraged simultaneous fMRI and EKG data acquired in 14 healthy volunteers prior to, during, and after intravenous administration of DMT, and, separately, placebo. fMRI data was preprocessed to derive individual dynamic activity matrices, reflecting the similarity of brain activity in time, and community detection algorithms were applied on these matrices to identify brain activity substates; EKG data was used to derive continuous heart rate. We identified a brain substate occurring immediately after DMT injection, characterized by increased superior temporal lobe activity, and hippocampal and medial parietal deactivations under DMT. Results revealed that hippocampus and medial parietal cortex hypoactivity correlated with scores of meaningfulness of the experience. During this first post-injection substate, increased heart rate under DMT correlated negatively with the meaningfulness of the experience and positively with hippocampus/medial parietal deactivation. These results suggest a chain of influence linking sympathetic regulation to hippocampal and medial parietal deactivations under DMT, which combined, may contribute to positive mental health outcomes related to self-referential processing following psychedelic administration.

6.
Brain Commun ; 6(2): fcae049, 2024.
Article in English | MEDLINE | ID: mdl-38515439

ABSTRACT

Psilocybin therapy for depression has started to show promise, yet the underlying causal mechanisms are not currently known. Here, we leveraged the differential outcome in responders and non-responders to psilocybin (10 and 25 mg, 7 days apart) therapy for depression-to gain new insights into regions and networks implicated in the restoration of healthy brain dynamics. We used large-scale brain modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-responders before treatment. Dynamic sensitivity analysis of systematic perturbation of these models enabled us to identify specific brain regions implicated in a transition from a depressive brain state to a healthy one. Binarizing the sample into treatment responders (>50% reduction in depressive symptoms) versus non-responders enabled us to identify a subset of regions implicated in this change. Interestingly, these regions correlate with in vivo density maps of serotonin receptors 5-hydroxytryptamine 2a and 5-hydroxytryptamine 1a, which psilocin, the active metabolite of psilocybin, has an appreciable affinity for, and where it acts as a full-to-partial agonist. Serotonergic transmission has long been associated with depression, and our findings provide causal mechanistic evidence for the role of brain regions in the recovery from depression via psilocybin.

7.
Sci Rep ; 14(1): 2181, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326446

ABSTRACT

Do psychedelics affect sexual functioning postacutely? Anecdotal and qualitative evidence suggests they do, but this has never been formally tested. While sexual functioning and satisfaction are generally regarded as an important aspect of human wellbeing, sexual dysfunction is a common symptom of mental health disorders. It is also a common side effect of selective serotonin reuptake inhibitors (SSRIs), a first line treatment for depression. The aim of the present paper was to investigate the post-acute effects of psychedelics on self-reported sexual functioning, combining data from two independent studies, one large and naturalistic and the other a smaller but controlled clinical trial. Naturalistic use of psychedelics was associated with improvements in several facets of sexual functioning and satisfaction, including improved pleasure and communication during sex, satisfaction with one's partner and physical appearance. Convergent results were found in a controlled trial of psilocybin therapy versus an SSRI, escitalopram, for depression. In this trial, patients treated with psilocybin reported positive changes in sexual functioning after treatment, while patients treated with escitalopram did not. Despite focusing on different populations and settings, this is the first research study to quantitively investigate the effects of psychedelics on sexual functioning. Results imply a potential positive effect on post-acute sexual functioning and highlight the need for more research on this.


Subject(s)
Hallucinogens , Humans , Hallucinogens/adverse effects , Sexual Behavior/psychology , Psilocybin/pharmacology , Psilocybin/therapeutic use , Escitalopram , Selective Serotonin Reuptake Inhibitors/adverse effects
8.
ACS Chem Neurosci ; 15(3): 462-471, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38214686

ABSTRACT

Recent findings have shown that psychedelics reliably enhance brain entropy (understood as neural signal diversity), and this effect has been associated with both acute and long-term psychological outcomes, such as personality changes. These findings are particularly intriguing, given that a decrease of brain entropy is a robust indicator of loss of consciousness (e.g., from wakefulness to sleep). However, little is known about how context impacts the entropy-enhancing effect of psychedelics, which carries important implications for how it can be exploited in, for example, psychedelic psychotherapy. This article investigates how brain entropy is modulated by stimulus manipulation during a psychedelic experience by studying participants under the effects of lysergic acid diethylamide (LSD) or placebo, either with gross state changes (eyes closed vs open) or different stimuli (no stimulus vs music vs video). Results show that while brain entropy increases with LSD under all of the experimental conditions, it exhibits the largest changes when subjects have their eyes closed. Furthermore, brain entropy changes are consistently associated with subjective ratings of the psychedelic experience, but this relationship is disrupted when participants are viewing a video─potentially due to a "competition" between external stimuli and endogenous LSD-induced imagery. Taken together, our findings provide strong quantitative evidence of the role of context in modulating neural dynamics during a psychedelic experience, underlining the importance of performing psychedelic psychotherapy in a suitable environment.


Subject(s)
Hallucinogens , Humans , Hallucinogens/pharmacology , Lysergic Acid Diethylamide , Brain , Brain Mapping , Psychotherapy
10.
Brain ; 147(1): 56-80, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37703310

ABSTRACT

Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.


Subject(s)
Cerebral Cortex , Receptor, Serotonin, 5-HT2A , Adult , Humans , Brain , Cerebral Cortex/physiology , Cognition/physiology , Neuroimaging
11.
Neuroimage ; 283: 120414, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37858906

ABSTRACT

The role of the thalamus in mediating the effects of lysergic acid diethylamide (LSD) was recently proposed in a model of communication and corroborated by imaging studies. However, a detailed analysis of LSD effects on nuclei-resolved thalamocortical connectivity is still missing. Here, in a group of healthy volunteers, we evaluated whether LSD intake alters the thalamocortical coupling in a nucleus-specific manner. Structural and resting-state functional Magnetic Resonance Imaging (MRI) data were acquired in a placebo-controlled study on subjects exposed to acute LSD administration. Structural MRI was used to parcel the thalamus into its constituent nuclei based on individual anatomy. Nucleus-specific changes of resting-state functional MRI (rs-fMRI) connectivity were mapped using a seed-based approach. LSD intake selectively increased the thalamocortical functional connectivity (FC) of the ventral complex, pulvinar, and non-specific nuclei. Functional coupling was increased between these nuclei and sensory cortices that include the somatosensory and auditory networks. The ventral and pulvinar nuclei also exhibited increased FC with parts of the associative cortex that are dense in serotonin type 2A receptors. These areas are hyperactive and hyper-connected upon LSD intake. At subcortical levels, LSD increased the functional coupling among the thalamus's ventral, pulvinar, and non-specific nuclei, but decreased the striatal-thalamic connectivity. These findings unravel some LSD effects on the modulation of subcortical-cortical circuits and associated behavioral outputs.


Subject(s)
Pulvinar , Thalamus , Humans , Thalamus/physiology , Magnetic Resonance Imaging , Cerebral Cortex/diagnostic imaging , Parietal Lobe , Neural Pathways
12.
Front Psychiatry ; 14: 1183740, 2023.
Article in English | MEDLINE | ID: mdl-37377473

ABSTRACT

Psychedelic therapy has witnessed a resurgence in interest in the last decade from the scientific and medical communities with evidence now building for its safety and efficacy in treating a range of psychiatric disorders including addiction. In this review we will chart the research investigating the role of these interventions in individuals with addiction beginning with an overview of the current socioeconomic impact of addiction, treatment options, and outcomes. We will start by examining historical studies from the first psychedelic research era of the mid-late 1900s, followed by an overview of the available real-world evidence gathered from naturalistic, observational, and survey-based studies. We will then cover modern-day clinical trials of psychedelic therapies in addiction from first-in-human to phase II clinical trials. Finally, we will provide an overview of the different translational human neuropsychopharmacology techniques, including functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), that can be applied to foster a mechanistic understanding of therapeutic mechanisms. A more granular understanding of the treatment effects of psychedelics will facilitate the optimisation of the psychedelic therapy drug development landscape, and ultimately improve patient outcomes.

13.
Sci Adv ; 9(24): eadf8332, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37315149

ABSTRACT

To understand how pharmacological interventions can exert their powerful effects on brain function, we need to understand how they engage the brain's rich neurotransmitter landscape. Here, we bridge microscale molecular chemoarchitecture and pharmacologically induced macroscale functional reorganization, by relating the regional distribution of 19 neurotransmitter receptors and transporters obtained from positron emission tomography, and the regional changes in functional magnetic resonance imaging connectivity induced by 10 different mind-altering drugs: propofol, sevoflurane, ketamine, lysergic acid diethylamide (LSD), psilocybin, N,N-Dimethyltryptamine (DMT), ayahuasca, 3,4-methylenedioxymethamphetamine (MDMA), modafinil, and methylphenidate. Our results reveal a many-to-many mapping between psychoactive drugs' effects on brain function and multiple neurotransmitter systems. The effects of both anesthetics and psychedelics on brain function are organized along hierarchical gradients of brain structure and function. Last, we show that regional co-susceptibility to pharmacological interventions recapitulates co-susceptibility to disorder-induced structural alterations. Collectively, these results highlight rich statistical patterns relating molecular chemoarchitecture and drug-induced reorganization of the brain's functional architecture.


Subject(s)
Ketamine , Methylphenidate , Humans , Brain , Membrane Transport Proteins , Modafinil
14.
Front Psychiatry ; 14: 1077311, 2023.
Article in English | MEDLINE | ID: mdl-37181886

ABSTRACT

Contemporary research on serotonergic psychedelic compounds has been rife with references to so-called 'mystical' subjective effects. Several psychometric assessments have been used to assess such effects, and clinical studies have found quantitative associations between 'mystical experiences' and positive mental health outcomes. The nascent study of psychedelic-induced mystical experiences, however, has only minimally intersected with relevant contemporary scholarship from disciplines within the social sciences and humanities, such as religious studies and anthropology. Viewed from the perspective of these disciplines-which feature rich historical and cultural literatures on mysticism, religion, and related topics-'mysticism' as used in psychedelic research is fraught with limitations and intrinsic biases that are seldom acknowledged. Most notably, existing operationalizations of mystical experiences in psychedelic science fail to historicize the concept and therefore fail to acknowledge its perennialist and specifically Christian bias. Here, we trace the historical genesis of the mystical in psychedelic research in order to illuminate such biases, and also offer suggestions toward more nuanced and culturally-sensitive operationalizations of this phenomenon. In addition, we argue for the value of, and outline, complementary 'non-mystical' approaches to understanding putative mystical-type phenomena that may help facilitate empirical investigation and create linkages to existing neuro-psychological constructs. It is our hope that the present paper helps build interdisciplinary bridges that motivate fruitful paths toward stronger theoretical and empirical approaches in the study of psychedelic-induced mystical experiences.

15.
bioRxiv ; 2023 May 12.
Article in English | MEDLINE | ID: mdl-37214949

ABSTRACT

Psychedelics offer a profound window into the functioning of the human brain and mind through their robust acute effects on perception, subjective experience, and brain activity patterns. In recent work using a receptor-informed network control theory framework, we demonstrated that the serotonergic psychedelics lysergic acid diethylamide (LSD) and psilocybin flatten the brain's control energy landscape in a manner that covaries with more dynamic and entropic brain activity. Contrary to LSD and psilocybin, whose effects last for hours, the serotonergic psychedelic N,N-dimethyltryptamine (DMT) rapidly induces a profoundly immersive altered state of consciousness lasting less than 20 minutes, allowing for the entirety of the drug experience to be captured during a single resting-state fMRI scan. Using network control theory, which quantifies the amount of input necessary to drive transitions between functional brain states, we integrate brain structure and function to map the energy trajectories of 14 individuals undergoing fMRI during DMT and placebo. Consistent with previous work, we find that global control energy is reduced following injection with DMT compared to placebo. We additionally show longitudinal trajectories of global control energy correlate with longitudinal trajectories of EEG signal diversity (a measure of entropy) and subjective ratings of drug intensity. We interrogate these same relationships on a regional level and find that the spatial patterns of DMT's effects on these metrics are correlated with serotonin 2a receptor density (obtained from separately acquired PET data). Using receptor distribution and pharmacokinetic information, we were able to successfully recapitulate the effects of DMT on global control energy trajectories, demonstrating a proof-of-concept for the use of control models in predicting pharmacological intervention effects on brain dynamics.

16.
Article in English | MEDLINE | ID: mdl-37003409

ABSTRACT

BACKGROUND: Lysergic acid diethylamide (LSD) is an atypical psychedelic compound that exerts its effects through pleiotropic actions, mainly involving 1A/2A serotoninergic (5-HT) receptor subtypes. However, the mechanisms by which LSD promotes a reorganization of the brain's functional activity and connectivity are still partially unknown. METHODS: Our study analyzed resting-state functional magnetic resonance imaging data acquired from 15 healthy volunteers undergoing LSD single-dose intake. A voxelwise analysis investigated the alterations of the brain's intrinsic functional connectivity and local signal amplitude induced by LSD or by a placebo. Quantitative comparisons assessed the spatial overlap between these 2 indices of functional reorganization and the topography of receptor expression obtained from a publicly available collection of in vivo, whole-brain atlases. Finally, linear regression models explored the relationships between changes in resting-state functional magnetic resonance imaging and behavioral aspects of the psychedelic experience. RESULTS: LSD elicited modifications of the cortical functional architecture that spatially overlapped with the distribution of serotoninergic receptors. Local signal amplitude and functional connectivity increased in regions belonging to the default mode and attention networks associated with high expression of 5-HT2A receptors. These functional changes correlate with the occurrence of simple and complex visual hallucinations. At the same time, a decrease in local signal amplitude and intrinsic connectivity was observed in limbic areas, which are dense with 5-HT1A receptors. CONCLUSIONS: This study provides new insights into the neural processes underlying the brain network reconfiguration induced by LSD. It also identifies a topographical relationship between opposite effects on brain functioning and the spatial distribution of different 5-HT receptors.


Subject(s)
Hallucinogens , Humans , Brain , Hallucinations , Hallucinogens/pharmacology , Lysergic Acid Diethylamide/pharmacology , Receptors, Serotonin , Serotonin/adverse effects
17.
J Affect Disord ; 333: 321-330, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37094657

ABSTRACT

BACKGROUND: Psychedelic-assisted psychotherapy with psilocybin is an emerging therapy with great promise for depression, and modern psychedelic therapy (PT) methods incorporate music as a key element. Music is an effective emotional/hedonic stimulus that could also be useful in assessing changes in emotional responsiveness following PT. METHODS: Brain responses to music were assessed before and after PT using functional Magnetic Resonance Imaging (fMRI) and ALFF (Amplitude of Low Frequency Fluctuations) analysis methods. Nineteen patients with treatment-resistant depression underwent two treatment sessions involving administration of psilocybin, with MRI data acquired one week prior and the day after completion of psilocybin dosing sessions. RESULTS: Comparison of music-listening and resting-state scans revealed significantly greater ALFF in bilateral superior temporal cortex for the post-treatment music scan, and in the right ventral occipital lobe for the post-treatment resting-state scan. ROI analyses of these clusters revealed a significant effect of treatment in the superior temporal lobe for the music scan only. Voxelwise comparison of treatment effects showed relative increases for the music scan in the bilateral superior temporal lobes and supramarginal gyrus, and relative decreases in the medial frontal lobes for the resting-state scan. ALFF in these music-related clusters was significantly correlated with intensity of subjective effects felt during the dosing sessions. LIMITATIONS: Open-label trial. Relatively small sample size. CONCLUSIONS: These data suggest an effect of PT on the brain's response to music, implying an elevated responsiveness to music after psilocybin therapy that was related to subjective drug effects felt during dosing.


Subject(s)
Hallucinogens , Music , Humans , Brain/physiology , Brain Mapping , Depression , Hallucinogens/therapeutic use , Magnetic Resonance Imaging/methods , Psilocybin/pharmacology , Psilocybin/therapeutic use
18.
Proc Natl Acad Sci U S A ; 120(13): e2218949120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36940333

ABSTRACT

Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.


Subject(s)
Hallucinogens , N,N-Dimethyltryptamine , Humans , N,N-Dimethyltryptamine/pharmacology , Hallucinogens/pharmacology , Magnetic Resonance Imaging , Brain , Electroencephalography
19.
Commun Biol ; 6(1): 117, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36709401

ABSTRACT

A central question in neuroscience is how consciousness arises from the dynamic interplay of brain structure and function. Here we decompose functional MRI signals from pathological and pharmacologically-induced perturbations of consciousness into distributed patterns of structure-function dependence across scales: the harmonic modes of the human structural connectome. We show that structure-function coupling is a generalisable indicator of consciousness that is under bi-directional neuromodulatory control. We find increased structure-function coupling across scales during loss of consciousness, whether due to anaesthesia or brain injury, capable of discriminating between behaviourally indistinguishable sub-categories of brain-injured patients, tracking the presence of covert consciousness. The opposite harmonic signature characterises the altered state induced by LSD or ketamine, reflecting psychedelic-induced decoupling of brain function from structure and correlating with physiological and subjective scores. Overall, connectome harmonic decomposition reveals how neuromodulation and the network architecture of the human connectome jointly shape consciousness and distributed functional activation across scales.


Subject(s)
Connectome , Hallucinogens , Humans , Consciousness/physiology , Brain/physiology , Hallucinogens/pharmacology , Magnetic Resonance Imaging
20.
J Psychopharmacol ; 37(1): 70-79, 2023 01.
Article in English | MEDLINE | ID: mdl-36433778

ABSTRACT

BACKGROUND: Music listening is a staple and valued component of psychedelic therapy, and previous work has shown that psychedelics can acutely enhance music-evoked emotion. AIMS: The present study sought to examine subjective responses to music before and after psilocybin therapy for treatment-resistant depression, while functional magnetic resonance imaging (fMRI) data was acquired. METHODS: Nineteen patients with treatment-resistant depression received a low oral dose (10 mg) of psilocybin, and a high dose (25 mg) 1 week later. fMRI was performed 1 week prior to the first dosing session and 1 day after the second. Two scans were conducted on each day: one with music and one without. Visual analogue scale ratings of music-evoked 'pleasure' plus ratings of other evoked emotions (21-item Geneva Emotional Music Scale) were completed after each scan. Given its role in musical reward, the nucleus accumbens (NAc) was chosen as region of interest for functional connectivity (FC) analyses. Effects of drug (vs placebo) and music (vs no music) on subjective and FC outcomes were assessed. Anhedonia symptoms were assessed pre- and post-treatment (Snaith-Hamilton Pleasure Scale). RESULTS: Results revealed a significant increase in music-evoked emotion following treatment with psilocybin that correlated with post-treatment reductions in anhedonia. A post-treatment reduction in NAc FC with areas resembling the default mode network was observed during music listening (vs no music). CONCLUSION: These results are consistent with current thinking on the role of psychedelics in enhancing music-evoked pleasure and provide some new insight into correlative brain mechanisms.


Subject(s)
Hallucinogens , Music , Humans , Psilocybin/pharmacology , Psilocybin/therapeutic use , Music/psychology , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , Anhedonia/physiology , Depression/drug therapy , Emotions , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL