Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 367
Filter
1.
J Parkinsons Dis ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38995803

ABSTRACT

Pregnancy in women with early-onset Parkinson's disease (PD) is likely to have a higher frequency given the trend toward increasing maternal age, thus resulting in a greater overlap time between childbearing age and PD risk. Deep brain stimulation (DBS) therapy is nowadays offered to PD patients at earlier stage of the disease, when women can still be pre-menopausal. However, few data are available about DBS safety during pregnancy. From a review of the available literature, only one article was published on this topic so far. Therefore, we have developed a clinical consensus on the safety of DBS during pregnancy in PD patients.

2.
medRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38978643

ABSTRACT

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) is a fatal neurodegenerative disorder with only a limited number of risk loci identified. We report our comprehensive genome-wide association study as part of the International FTLD-TDP Whole-Genome Sequencing Consortium, including 985 cases and 3,153 controls, and meta-analysis with the Dementia-seq cohort, compiled from 26 institutions/brain banks in the United States, Europe and Australia. We confirm UNC13A as the strongest overall FTLD-TDP risk factor and identify TNIP1 as a novel FTLD-TDP risk factor. In subgroup analyses, we further identify for the first time genome-wide significant loci specific to each of the three main FTLD-TDP pathological subtypes (A, B and C), as well as enrichment of risk loci in distinct tissues, brain regions, and neuronal subtypes, suggesting distinct disease aetiologies in each of the subtypes. Rare variant analysis confirmed TBK1 and identified VIPR1 , RBPJL , and L3MBTL1 as novel subtype specific FTLD-TDP risk genes, further highlighting the role of innate and adaptive immunity and notch signalling pathway in FTLD-TDP, with potential diagnostic and novel therapeutic implications.

3.
Brain ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916996

ABSTRACT

Lewy body dementia and Alzheimer's disease (AD) are leading causes of cognitive impairment, characterized by distinct but overlapping neuropathological hallmarks. Lewy body disease (LBD) is characterized by alpha-synuclein aggregates in the form of Lewy bodies as well as the deposition of extracellular amyloid plaques, with many cases also exhibiting neurofibrillary tangle (NFT) pathology. In contrast, Alzheimer's disease is characterized by amyloid plaques and neurofibrillary tangles. Both conditions often co-occur with additional neuropathological changes, such as vascular disease and TDP-43 pathology. To elucidate shared and distinct molecular signatures underlying these mixed neuropathologies, we extensively analyzed transcriptional changes in the anterior cingulate cortex, a brain region critically involved in cognitive processes. We performed bulk tissue RNAseq from the anterior cingulate cortex and determined differentially expressed genes (q-value < 0.05) in control (n = 81), Lewy body disease (n = 436), Alzheimer's disease (n = 53), and pathological amyloid cases consisting of amyloid pathology with minimal or no tau pathology (n = 39). We used gene set enrichment and weighted gene correlation network analysis (WGCNA) to understand the pathways associated with each neuropathologically defined group. Lewy body disease cases had strong up-regulation of inflammatory pathways and down-regulation of metabolic pathways. The Lewy body disease cases were further subdivided into either high Thal amyloid, Braak NFT, or low pathological burden cohorts. Compared to the control cases, the Lewy body disease cohorts consistently showed up-regulation for genes involved in protein folding and cytokine immune response, as well as down-regulation of fatty acid metabolism. Surprisingly, concomitant tau pathology within the Lewy body disease cases resulted in no additional changes. Some core inflammatory pathways were shared between Alzheimer's disease and Lewy body disease but with numerous disease-specific changes. Direct comparison of Lewy body disease cohorts versus Alzheimer's disease cases revealed strong enrichment of synaptic signaling, behavior, and neuronal system pathways. Females had a stronger response overall in both Lewy body and Alzheimer's disease, with several sex-specific changes. Overall, the results identify genes commonly and uniquely dysregulated in neuropathologically defined Lewy body disease and Alzheimer's disease cases, shedding light on shared and distinct molecular pathways. Additionally, the study underscores the importance of considering sex-specific changes in understanding the complex transcriptional landscape of these neurodegenerative diseases.

4.
Nat Genet ; 56(6): 1090-1099, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839884

ABSTRACT

Restless legs syndrome (RLS) affects up to 10% of older adults. Their healthcare is impeded by delayed diagnosis and insufficient treatment. To advance disease prediction and find new entry points for therapy, we performed meta-analyses of genome-wide association studies in 116,647 individuals with RLS (cases) and 1,546,466 controls of European ancestry. The pooled analysis increased the number of risk loci eightfold to 164, including three on chromosome X. Sex-specific meta-analyses revealed largely overlapping genetic predispositions of the sexes (rg = 0.96). Locus annotation prioritized druggable genes such as glutamate receptors 1 and 4, and Mendelian randomization indicated RLS as a causal risk factor for diabetes. Machine learning approaches combining genetic and nongenetic information performed best in risk prediction (area under the curve (AUC) = 0.82-0.91). In summary, we identified targets for drug development and repurposing, prioritized potential causal relationships between RLS and relevant comorbidities and risk factors for follow-up and provided evidence that nonlinear interactions are likely relevant to RLS risk prediction.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Restless Legs Syndrome , Restless Legs Syndrome/genetics , Humans , Risk Factors , Female , Male , Polymorphism, Single Nucleotide , Mendelian Randomization Analysis , Machine Learning
5.
Pharmacogenomics J ; 24(4): 19, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890281

ABSTRACT

Nimodipine, an L-type cerebroselective calcium channel antagonist, is the only drug approved by the US Food and Drug Administration for the neuroprotection of patients with aneurysmal subarachnoid hemorrhage (aSAH). Four randomized, placebo-controlled trials of nimodipine demonstrated clinical improvement over placebo; however, these occurred before precision medicine with pharmacogenomics was readily available. The standard enteral dose of nimodipine recommended after aSAH is 60 mg every 4 h. However, up to 78% of patients with aSAH develop systemic arterial hypotension after taking the drug at the recommended dose, which could theoretically limit its neuroprotective role and worsen cerebral perfusion pressure and cerebral blood flow, particularly when concomitant vasospasm is present. We investigated the association between nimodipine dose changes and clinical outcomes in a consecutive series of 150 patients (mean age, 56 years; 70.7% women) with acute aSAH. We describe the pharmacogenomic relationship of nimodipine dose reduction with clinical outcomes. These results have major implications for future individualized dosing of nimodipine in the era of precision medicine.


Subject(s)
Calcium Channel Blockers , Nimodipine , Pharmacogenetics , Subarachnoid Hemorrhage , Humans , Nimodipine/administration & dosage , Nimodipine/adverse effects , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/genetics , Subarachnoid Hemorrhage/complications , Middle Aged , Female , Male , Calcium Channel Blockers/administration & dosage , Calcium Channel Blockers/adverse effects , Calcium Channel Blockers/therapeutic use , Aged , Pharmacogenetics/methods , Treatment Outcome , Dose-Response Relationship, Drug , Adult , Precision Medicine/methods , Vasospasm, Intracranial/drug therapy
6.
Nat Genet ; 56(7): 1371-1376, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38858457

ABSTRACT

Despite substantial progress, causal variants are identified only for a minority of familial Parkinson's disease (PD) cases, leaving high-risk pathogenic variants unidentified1,2. To identify such variants, we uniformly processed exome sequencing data of 2,184 index familial PD cases and 69,775 controls. Exome-wide analyses converged on RAB32 as a novel PD gene identifying c.213C > G/p.S71R as a high-risk variant presenting in ~0.7% of familial PD cases while observed in only 0.004% of controls (odds ratio of 65.5). This variant was confirmed in all cases via Sanger sequencing and segregated with PD in three families. RAB32 encodes a small GTPase known to interact with LRRK2 (refs. 3,4). Functional analyses showed that RAB32 S71R increases LRRK2 kinase activity, as indicated by increased autophosphorylation of LRRK2 S1292. Here our results implicate mutant RAB32 in a key pathological mechanism in PD-LRRK2 kinase activity5-7-and thus provide novel insights into the mechanistic connections between RAB family biology, LRRK2 and PD risk.


Subject(s)
Genetic Predisposition to Disease , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , rab GTP-Binding Proteins , Humans , Parkinson Disease/genetics , rab GTP-Binding Proteins/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Female , Male , Pedigree , Middle Aged , Mutation , Exome/genetics , Exome Sequencing , Case-Control Studies , Aged
7.
JAMA Neurol ; 81(6): 619-629, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38619853

ABSTRACT

Importance: Factors associated with clinical heterogeneity in Alzheimer disease (AD) lay along a continuum hypothesized to associate with tangle distribution and are relevant for understanding glial activation considerations in therapeutic advancement. Objectives: To examine clinicopathologic and neuroimaging characteristics of disease heterogeneity in AD along a quantitative continuum using the corticolimbic index (CLix) to account for individuality of spatially distributed tangles found at autopsy. Design, Setting, and Participants: This cross-sectional study was a retrospective medical record review performed on the Florida Autopsied Multiethnic (FLAME) cohort accessioned from 1991 to 2020. Data were analyzed from December 2022 to December 2023. Structural magnetic resonance imaging (MRI) and tau positron emission tomography (PET) were evaluated in an independent neuroimaging group. The FLAME cohort includes 2809 autopsied individuals; included in this study were neuropathologically diagnosed AD cases (FLAME-AD). A digital pathology subgroup of FLAME-AD cases was derived for glial activation analyses. Main Outcomes and Measures: Clinicopathologic factors of heterogeneity that inform patient history and neuropathologic evaluation of AD; CLix score (lower, relative cortical predominance/hippocampal sparing vs higher, relative cortical sparing/limbic predominant cases); neuroimaging measures (ie, structural MRI and tau-PET). Results: Of the 2809 autopsied individuals in the FLAME cohort, 1361 neuropathologically diagnosed AD cases were evaluated. A digital pathology subgroup included 60 FLAME-AD cases. The independent neuroimaging group included 93 cases. Among the 1361 FLAME-AD cases, 633 were male (47%; median [range] age at death, 81 [54-96] years) and 728 were female (53%; median [range] age at death, 81 [53-102] years). A younger symptomatic onset (Spearman ρ = 0.39, P < .001) and faster decline on the Mini-Mental State Examination (Spearman ρ = 0.27; P < .001) correlated with a lower CLix score in FLAME-AD series. Cases with a nonamnestic syndrome had lower CLix scores (median [IQR], 13 [9-18]) vs not (median [IQR], 21 [15-27]; P < .001). Hippocampal MRI volume (Spearman ρ = -0.45; P < .001) and flortaucipir tau-PET uptake in posterior cingulate and precuneus cortex (Spearman ρ = -0.74; P < .001) inversely correlated with CLix score. Although AD cases with a CLix score less than 10 had higher cortical tangle count, we found lower percentage of CD68-activated microglia/macrophage burden (median [IQR], 0.46% [0.32%-0.75%]) compared with cases with a CLix score of 10 to 30 (median [IQR], 0.75% [0.51%-0.98%]) and on par with a CLix score of 30 or greater (median [IQR], 0.40% [0.32%-0.57%]; P = .02). Conclusions and Relevance: Findings show that AD heterogeneity exists along a continuum of corticolimbic tangle distribution. Reduced CD68 burden may signify an underappreciated association between tau accumulation and microglia/macrophages activation that should be considered in personalized therapy for immune dysregulation.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Neuroglia , Positron-Emission Tomography , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Male , Female , Aged , Aged, 80 and over , Neuroglia/pathology , Neuroglia/metabolism , Cross-Sectional Studies , Retrospective Studies , Neurofibrillary Tangles/pathology , tau Proteins/metabolism , Middle Aged , Neuroimaging , Cohort Studies , Brain/diagnostic imaging , Brain/pathology , Brain/metabolism , Autopsy
8.
Parkinsonism Relat Disord ; 123: 106038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503262

ABSTRACT

RAB39B mutations have been identified in X-linked developmental delays. Recently, RAB39B mutations were identified in males with early-onset parkinsonism and intellectual disability. A novel loss-of-function RAB39B mutation was found in a female patient with typical early-onset Parkinson's disease (EOPD). RAB39B mutations may cause EOPD, potentially due to a-synuclein homeostasis disruption.


Subject(s)
Age of Onset , Parkinson Disease , rab GTP-Binding Proteins , Humans , rab GTP-Binding Proteins/genetics , Female , Parkinson Disease/genetics , Loss of Function Mutation , Adult
9.
medRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464214

ABSTRACT

Importance: The chromosome 17q21.31 region, containing a 900 Kb inversion that defines H1 and H2 haplotypes, represents the strongest genetic risk locus in progressive supranuclear palsy (PSP). In addition to H1 and H2, various structural forms of 17q21.31, characterized by the copy number of α, ß, and γ duplications, have been identified. However, the specific effect of each structural form on the risk of PSP has never been evaluated in a large cohort study. Objective: To assess the association of different structural forms of 17q.21.31, defined by the copy numbers of α, ß, and γ duplications, with the risk of PSP and MAPT sub-haplotypes. Design setting and participants: Utilizing whole genome sequencing data of 1,684 (1,386 autopsy confirmed) individuals with PSP and 2,392 control subjects, a case-control study was conducted to investigate the association of copy numbers of α, ß, and γ duplications and structural forms of 17q21.31 with the risk of PSP. All study subjects were selected from the Alzheimer's Disease Sequencing Project (ADSP) Umbrella NG00067.v7. Data were analyzed between March 2022 and November 2023. Main outcomes and measures: The main outcomes were the risk (odds ratios [ORs]) for PSP with 95% CIs. Risks for PSP were evaluated by logistic regression models. Results: The copy numbers of α and ß were associated with the risk of PSP only due to their correlation with H1 and H2, while the copy number of γ was independently associated with the increased risk of PSP. Each additional duplication of γ was associated with 1.10 (95% CI, 1.04-1.17; P = 0.0018) fold of increased risk of PSP when conditioning H1 and H2. For the H1 haplotype, addition γ duplications displayed a higher odds ratio for PSP: the odds ratio increases from 1.21 (95%CI 1.10-1.33, P = 5.47 × 10-5) for H1ß1γ1 to 1.29 (95%CI 1.16-1.43, P = 1.35 × 10-6) for H1ß1γ2, 1.45 (95%CI 1.27-1.65, P = 3.94 × 10-8) for H1ß1γ3, and 1.57 (95%CI 1.10-2.26, P = 1.35 × 10-2) for H1ß1γ4. Moreover, H1ß1γ3 is in linkage disequilibrium with H1c (R2 = 0.31), a widely recognized MAPT sub-haplotype associated with increased risk of PSP. The proportion of MAPT sub-haplotypes associated with increased risk of PSP (i.e., H1c, H1d, H1g, H1o, and H1h) increased from 34% in H1ß1γ1 to 77% in H1ß1γ4. Conclusions and relevance: This study revealed that the copy number of γ was associated with the risk of PSP independently from H1 and H2. The H1 haplotype with more γ duplications showed a higher odds ratio for PSP and were associated with MAPT sub-haplotypes with increased risk of PSP. These findings expand our understanding of how the complex structure at 17q21.31 affect the risk of PSP.

10.
Acta Neuropathol ; 147(1): 54, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38472443

ABSTRACT

Rare and common GBA variants are risk factors for both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the degree to which GBA variants are associated with neuropathological features in Lewy body disease (LBD) is unknown. Herein, we assessed 943 LBD cases and examined associations of 15 different neuropathological outcomes with common and rare GBA variants. Neuropathological outcomes included LBD subtype, presence of a high likelihood of clinical DLB (per consensus guidelines), LB counts in five cortical regions, tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen, ventrolateral substantia nigra neuronal loss, Braak neurofibrillary tangle (NFT) stage, Thal amyloid phase, phospho-ubiquitin (pS65-Ub) level, TDP-43 pathology, and vascular disease. Sequencing of GBA exons revealed a total of 42 different variants (4 common [MAF > 0.5%], 38 rare [MAF < 0.5%]) in our series, and 165 cases (17.5%) had a copy of the minor allele for ≥ 1 variant. In analysis of common variants, p.L483P was associated with a lower Braak NFT stage (OR = 0.10, P < 0.001). In gene-burden analysis, presence of the minor allele for any GBA variant was associated with increased odds of a high likelihood of DLB (OR = 2.00, P < 0.001), a lower Braak NFT stage (OR = 0.48, P < 0.001), a lower Thal amyloid phase (OR = 0.55, P < 0.001), and a lower pS65-Ub level (ß: -0.37, P < 0.001). Subgroup analysis revealed that GBA variants were most common in LBD cases with a combination of transitional/diffuse LBD and Braak NFT stage 0-II or Thal amyloid phase 0-1, and correspondingly that the aforementioned associations of GBA gene-burden with a decreased Braak NFT stage and Thal amyloid phase were observed only in transitional or diffuse LBD cases. Our results indicate that in LBD, GBA variants occur most frequently in cases with greater LB pathology and low AD pathology, further informing disease-risk associations of GBA in PD, PD dementia, and DLB.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Parkinson Disease , Humans , Lewy Body Disease/pathology , Parkinson Disease/pathology , Alzheimer Disease/pathology , Substantia Nigra/pathology , Neurofibrillary Tangles/pathology
11.
bioRxiv ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38293184

ABSTRACT

Loss-of-function mutations in the genes encoding PINK1 and PRKN result in early-onset Parkinson disease (EOPD). Together the encoded enzymes direct a neuroprotective pathway that ensures the elimination of damaged mitochondria via autophagy. We performed a genome-wide high content imaging miRNA screen for inhibitors of the PINK1-PRKN pathway and identified all three members of the miRNA family 29 (miR-29). Using RNAseq we identified target genes and found that siRNA against ATG9A phenocopied the effects of miR-29 and inhibited the initiation of PINK1-PRKN mitophagy. Furthermore, we discovered two rare, potentially deleterious, missense variants (p.R631W and p.S828L) in our EOPD cohort and tested them experimentally in cells. While expression of wild-type ATG9A was able to rescue the effects of miR-29a, the EOPD-associated variants behaved like loss-of-function mutations. Together, our study validates miR-29 and its target gene ATG9A as novel regulators of mitophagy initiation. It further serves as proof-of-concept of finding novel, potentially disease-causing EOPD-linked variants specifically in mitophagy regulating genes. The nomination of genetic variants and biological pathways is important for the stratification and treatment of patients that suffer from devastating diseases, such as EOPD.

12.
Neurol Neurochir Pol ; 58(1): 38-46, 2024.
Article in English | MEDLINE | ID: mdl-38175148

ABSTRACT

INTRODUCTION: Advances in sequencing technologies have enabled extensive genetic testing on an individual basis. Genome-wide association studies (GWAS) have provided insight into the pathophysiology of PD. Additionally, direct-to-consumer genetic testing has enabled the identification of genetic diseases and risk factors without genetic counselling. As genetics increasingly permeates clinical practice, this paper aims to summarise the most important information on genetics in PD forclinical practitioners. STATE-OF-THE-ART: LRRK2 mutations may be found in c.1% of all PD patients with an indistinguishable phenotype from sporadic PD. LRRK2-PD is more prevalent in patients with a positive family history (5-6%) and among certain populations (e.g. up to 41% in North Africans and Ashkenazi Jews). Other familial forms include PRKN (patients with early onset, EOPD), VPS35 (Western European ancestry), PINK1 (EOPD), DJ-1 (EOPD), and SNCA. GBA mutations are found in a large number of PD patients and are associated with faster progression and a poorer prognosis. GWAS have identified 90 genetic risk variants for developing PD and several genetic modifiers for the age at onset, disease progression, and response to treatment. CLINICAL IMPLICATIONS: Multigene panels using next-generation sequencing (NGS) are the first choice for genetic testing in clinical settings. Whole exome sequencing is increasingly being used, particularly as the second-tier testing in patients with negative results of multigene panels. NGS may not detect accurately copy number variants (CNV), meaning that additional analysis is warranted. In a case of a variant of unknown significance (VUS), we suggest firstly searching the up-to-date literature. Segregation studies and in silico predictions may shed more light on the character of the VUS; however, functional studies remain the gold standard. Several interventional clinical trials are active for carriers of LRRK2 and/or GBA mutations. FUTURE DIRECTIONS: Application of artificial intelligence and machine learning will enable high-throughput analysis of large sets of multimodal data. We speculate that, in the future, the treatment landscape for PD will be similar to that in oncological conditions, in which the presence of certain gene mutations or gene overexpression determines the prognosis and treatment decision-making.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/diagnosis , Genome-Wide Association Study , Artificial Intelligence , Genetic Testing , Mutation/genetics , Genetic Predisposition to Disease/genetics
13.
medRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38234807

ABSTRACT

Background: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73×10-3) in PSP. Conclusions: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.

14.
Sleep ; 47(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38181205

ABSTRACT

STUDY OBJECTIVES: Rapid eye movement sleep behavior disorder (RBD) is strongly associated with phenoconversion to an overt synucleinopathy, e.g. Parkinson's disease (PD), Lewy body dementia, and related disorders. Comorbid traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD)-henceforth "neurotrauma" (NT)-increase the odds of RBD by ~2.5-fold and are associated with an increased rate of service-connected PD in Veterans. Thus, RBD and NT are both independently associated with PD; however, it is unclear how NT influences neurological function in patients with RBD. METHODS: Participants ≥18 years with overnight polysomnogram-confirmed RBD were enrolled between 8/2018 to 4/2021 through the North American Prodromal Synucleinopathy Consortium. Standardized assessments for RBD, TBI, and PTSD history, as well as cognitive, motor, sensory, and autonomic function, were completed. This cross-sectional analysis compared cases (n = 24; RBD + NT) to controls (n = 96; RBD), matched for age (~60 years), sex (15% female), and years of education (~15 years). RESULTS: RBD + NT reported earlier RBD symptom onset (37.5 ±â€…11.9 vs. 52.2 ±â€…15.1 years of age) and a more severe RBD phenotype. Similarly, RBD + NT reported more severe anxiety and depression, greater frequency of hypertension, and significantly worse cognitive, motor, and autonomic function compared to RBD. No differences in olfaction or color vision were observed. CONCLUSIONS: This cross-sectional, matched case:control study shows individuals with RBD + NT have significantly worse neurological measures related to common features of an overt synucleinopathy. Confirmatory longitudinal studies are ongoing; however, these results suggest RBD + NT may be associated with more advanced neurological symptoms related to an evolving neurodegenerative process.


Subject(s)
REM Sleep Behavior Disorder , Humans , REM Sleep Behavior Disorder/epidemiology , REM Sleep Behavior Disorder/physiopathology , Male , Female , Middle Aged , Cross-Sectional Studies , Aged , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/physiopathology , Synucleinopathies/physiopathology , Synucleinopathies/epidemiology , Synucleinopathies/complications , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/physiopathology , Prodromal Symptoms , Polysomnography , Comorbidity , Autonomic Nervous System Diseases/epidemiology , Autonomic Nervous System Diseases/physiopathology , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Parkinson Disease/complications , Parkinson Disease/physiopathology , Parkinson Disease/epidemiology
15.
Clin Park Relat Disord ; 10: 100236, 2024.
Article in English | MEDLINE | ID: mdl-38283104

ABSTRACT

We describe a 66-year-old woman with Parkinson's disease, carrying a known pathogenic missense variant in the Valosin-containing-protein (VCP) gene. She responded excellently to L-dopa, had no cognitive or motoneuronal dysfunction. Laboratory analyses and MRI were unremarkable. Genetic testing revealed a heterozygous variant in VCP(NM_007126.5), chr9 (GRCh3 7):g.35060820C > T, c.1460G > A p.Arg487His (p.R487H).

16.
Neurol Genet ; 10(1): e200120, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38250184

ABSTRACT

Background and Objectives: Alzheimer disease (AD) has a polygenic architecture, for which genome-wide association studies (GWAS) have helped elucidate sequence variants (SVs) influencing susceptibility. Polygenic risk score (PRS) approaches show promise for generating summary measures of inherited risk for clinical AD based on the effects of APOE and other GWAS hits. However, existing PRS approaches, based on traditional regression models, explain only modest variation in AD dementia risk and AD-related endophenotypes. We hypothesized that machine learning (ML) models of polygenic risk (ML-PRS) could outperform standard regression-based PRS methods and therefore have the potential for greater clinical utility. Methods: We analyzed combined data from the Mayo Clinic Study of Aging (n = 1,791) and the Alzheimer's Disease Neuroimaging Initiative (n = 864). An AD PRS was computed for each participant using the top common SVs obtained from a large AD dementia GWAS. In parallel, ML models were trained using those SV genotypes, with amyloid PET burden as the primary outcome. Secondary outcomes included amyloid PET positivity and clinical diagnosis (cognitively unimpaired vs impaired). We compared performance between ML-PRS and standard PRS across 100 training sessions with different data splits. In each session, data were split into 80% training and 20% testing, and then five-fold cross-validation was used within the training set to ensure the best model was produced for testing. We also applied permutation importance techniques to assess which genetic factors contributed most to outcome prediction. Results: ML-PRS models outperformed the AD PRS (r2 = 0.28 vs r2 = 0.24 in test set) in explaining variation in amyloid PET burden. Among ML approaches, methods accounting for nonlinear genetic influences were superior to linear methods. ML-PRS models were also more accurate when predicting amyloid PET positivity (area under the curve [AUC] = 0.80 vs AUC = 0.63) and the presence of cognitive impairment (AUC = 0.75 vs AUC = 0.54) compared with the standard PRS. Discussion: We found that ML-PRS approaches improved upon standard PRS for prediction of AD endophenotypes, partly related to improved accounting for nonlinear effects of genetic susceptibility alleles. Further adaptations of the ML-PRS framework could help to close the gap of remaining unexplained heritability for AD and therefore facilitate more accurate presymptomatic and early-stage risk stratification for clinical decision-making.

17.
Neuropathology ; 44(2): 115-125, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37525358

ABSTRACT

Transactive response DNA-binding protein 43 (TDP-43) pathological inclusions are found in frontotemporal lobar degeneration (FTLD-TDP) and Alzheimer's disease (AD-TDP). While clinically different, TDP-43 inclusions in FTLD-TDP and AD can have similar morphological characteristics. However, TDP-43 colocalizing with tau and forming "apple-bite" or "flame-shaped" neuronal cytoplasmic inclusions (NCI) are only found in AD-TDP. Here, we describe a case with AD and neuritic plaque-associated TDP-43. The patient was a 96-year-old right-handed Caucasian woman who had developed a slowly progressive amnestic syndrome compatible with typical AD at age 80. Genetic testing revealed APOE ε3/ε4, GRN r5848 CT, and MAPT H1/H2 genotype. Consistent with the old age at onset and long disease duration, limbic-predominant AD was found at autopsy, with high hippocampal yet low cortical neurofibrillary tangle (NFT) counts. Hippocampal and amygdala sclerosis were present. Immunohistochemistry for phospho-TDP-43 showed NCIs, dystrophic neurites, and rare neuronal intranuclear inclusions consistent with FTLD-TDP type A, as well as tau NFT-associated TDP-43 inclusions. These were frequent in the amygdala, entorhinal cortex, hippocampus, occipitotemporal gyrus, and inferior temporal gyrus but sparse in the mid-frontal cortex. Additionally, there were TDP-43-immunoreactive inclusions forming plaque-like structures in the molecular layer of the dentate fascia of the hippocampus. The presence of neuritic plaques in the same region was confirmed using thioflavin-S fluorescent microscopy and immunohistochemistry for phospho-tau. Double labeling immunofluorescence showed colocalization of TDP-43 and tau within neuritic plaques. Other pathologies included mild Lewy body pathology predominantly affecting the amygdala and olfactory bulb, aging-related tau astrogliopathy, and mixed small vessel disease (arteriolosclerosis and amyloid angiopathy) with several cortical microinfarcts. In conclusion, we have identified TDP-43 colocalizing with tau in neuritic plaques in AD, which expands the association of TDP-43 and tau in AD beyond NFTs. The clinical correlate of this plaque-associated TDP-43 appears to be a slowly progressive amnestic syndrome.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Female , Humans , Aged, 80 and over , Alzheimer Disease/pathology , Plaque, Amyloid , Frontotemporal Lobar Degeneration/pathology , DNA-Binding Proteins/metabolism , Memory Disorders/etiology
18.
Parkinsonism Relat Disord ; 119: 105935, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072719

ABSTRACT

INTRODUCTION: Substantial heterogeneity between individual patients in the clinical presentation of Parkinson's disease (PD) has led to the classification of distinct PD subtypes. However, genetic susceptibility factors for specific PD subtypes are not well understood. Therefore, the present study aimed to investigate the genetics of PD heterogeneity by performing a genome-wide association study (GWAS) of PD subtypes. METHODS: A total of 799 PD patients were included and classified into tremor-dominant (TD) (N = 345), akinetic-rigid (AR) (N = 227), gait-difficulty (GD) (N = 82), and mixed (MX) (N = 145) phenotypic subtypes. After array genotyping and subsequent imputation, a total of 7,918,344 variants were assessed for association with each PD subtype using logistic regression models that were adjusted for age, sex, and the top five principal components of GWAS data. RESULTS: We identified one genome-wide significant association (P < 5 × 10-8), which was between the MIR3976HG rs7504760 variant and the AR subtype (Odds ratio [OR] = 6.12, P = 2.57 × 10-8). Suggestive associations (P < 1 × 10-6) were observed regarding TD for RP11-497G19.3/RP11-497G19.1 rs7304254 (OR = 3.33, P = 3.89 × 10-7), regarding GD for HES2 rs111473931 (OR = 3.18, P = 6.85 × 10-7), RP11-400D2.3/CTD-2012I17.1 rs149082205 (OR = 8.96, P = 9.08 × 10-7), and RN7SL408P/SGK1 rs56161738 (OR = 2.97, P = 6.19 × 10-7), and regarding MX for MMRN2 rs112991171 (OR = 4.98, P = 1.02 × 10-7). CONCLUSION: Our findings indicate that genetic variation may account for part of the clinical heterogeneity of PD. In particular, we found a novel genome-wide significant association between MIR3976HG variation and the AR PD subtype. Replication of these findings will be important in order to better define the genetic architecture of clinical variability in PD disease presentation.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/complications , Genome-Wide Association Study , Tremor/complications , Odds Ratio
19.
Mov Disord ; 39(2): 380-390, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37986699

ABSTRACT

BACKGROUND: Mixed pathology is common at autopsy for a number of age-associated neurodegenerative disorders; however, the frequency of comorbid pathologies in multiple system atrophy (MSA) and their clinical correlations are poorly understood. OBJECTIVE: We determined the frequency of comorbid pathologic processes in autopsy-confirmed MSA and assessed their clinical correlates. METHODS: This study included 160 neuropathologically established MSA from the Mayo Clinic brain bank. Clinical information, including age at onset or death, clinical subtype, initial symptoms, antemortem clinical diagnosis, and cognitive dysfunction was collected. We assessed comorbid pathologies including Alzheimer's disease neuropathologic change, Lewy-related pathology, argyrophilic grain disease, age-related τ astrogliopathy, transactive DNA-binding protein 43 pathology, cerebral amyloid angiopathy, and cerebrovascular small vessel disease and examined their clinical impact. RESULTS: The majority of MSA patients (62%) had no significant comorbid pathologies. There was a positive correlation between age at onset or death with the number of comorbid pathologies; however, even in the highest quartile group (average age at death 78 ± 6 years), the average number of comorbid pathologies was <2. Logistic regression analysis revealed that none of the assessed variables, including sex, age at onset, and the presence or absence of each comorbid pathology, were significantly associated with cognitive dysfunction. CONCLUSIONS: The majority of MSA patients do not have comorbid pathologies, even in advanced age, indicating that MSA is unique among neurodegenerative disorders in this regard. There was minimal clinical impact of comorbid pathologies in MSA. These findings warrant focusing on α-synuclein for the treatment strategy for MSA. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Multiple System Atrophy , Humans , Aged , Aged, 80 and over , Multiple System Atrophy/complications , Multiple System Atrophy/epidemiology , Multiple System Atrophy/diagnosis , Alzheimer Disease/metabolism , Brain/pathology , Comorbidity , Cognitive Dysfunction/complications
20.
medRxiv ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37790572

ABSTRACT

Background: Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2. Objectives: To investigate the effects of genetic variants on risk and time to LID. Methods: We performed a genome-wide association study (GWAS) and analyses focused on GBA1 and LRRK2 variants. We also calculated polygenic risk scores including risk variants for PD and variants in genes involved in the dopaminergic transmission pathway. To test the influence of genetics on LID risk we used logistic regression, and to examine its impact on time to LID we performed Cox regression including 1,612 PD patients with and 3,175 without LID. Results: We found that GBA1 variants were associated with LID risk (OR=1.65, 95% CI=1.21-2.26, p=0.0017) and LRRK2 variants with reduced time to LID onset (HR=1.42, 95% CI=1.09-1.84, p=0.0098). The fourth quartile of the PD PRS was associated with increased LID risk (ORfourth_quartile=1.27, 95% CI=1.03-1.56, p=0.0210). The third and fourth dopamine pathway PRS quartiles were associated with a reduced time to development of LID (HRthird_quartile=1.38, 95% CI=1.07-1.79, p=0.0128; HRfourth_quartile=1.38, 95% CI=1.06-1.78, p=0.0147). Conclusions: This study suggests that variants implicated in PD and in the dopaminergic transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to examine how these findings can inform clinical care.

SELECTION OF CITATIONS
SEARCH DETAIL
...