Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 203
Filter
1.
Clin Infect Dis ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016606

ABSTRACT

INTRODUCTION: Understanding the pneumococcal serotypes causing community-acquired pneumonia (CAP) is essential for evaluating the impact of pneumococcal vaccines. METHODS: We conducted a prospective surveillance study of adults aged ≥18 years hospitalized with CAP at 3 hospitals in Tennessee and Georgia between 1 September 2018 and 31 October 2022. We assessed for pneumococcal etiology with cultures, the BinaxNOW urinary antigen detection test, and serotype-specific urinary antigen detection assays that detect 30 pneumococcal serotypes contained in the investigational pneumococcal conjugate vaccine V116, as well as licensed vaccines PCV15 and PCV20 (except serotype 15B). The distribution of pneumococcal serotypes was calculated based on serotype-specific urinary antigen detection results. RESULTS: Among 2917 hospitalized adults enrolled with CAP, 352 (12.1%) patients had Streptococcus pneumoniae detected, including 51 (1.7%) patients with invasive pneumococcal pneumonia. The 8 most commonly detected serotypes were: 3, 22F, 19A, 35B, 9N, 19F, 23A, and 11A. Among 2917 adults with CAP, 272 (9.3%) had a serotype detected that is contained in V116, compared to 196 (6.7%) patients with a serotype contained in PCV20 (P < .001), and 168 (5.8%) patients with a serotype contained in PCV15 (P < .001). A serotype contained in V116 but not PCV15 or PCV20 was detected in 120 (4.1%) patients, representing 38.0% of serotype detections. CONCLUSIONS: Approximately 12% of adults hospitalized with CAP had S. pneumoniae detected, and approximately one-third of the detected pneumococcal serotypes were not contained in PCV15 or PCV20. Development of new pneumococcal vaccines with expanded serotype coverage has the potential to prevent a substantial burden of disease.

2.
J Infect Dis ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995029

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a leading cause of acute respiratory illness (ARI) in older adults. Optimizing diagnosis could improve understanding of RSV burden. METHODS: We enrolled adults ≥50 years of age hospitalized with ARI and adults of any age hospitalized with congestive heart failure or chronic obstructive pulmonary disease exacerbations at two hospitals during two respiratory seasons (2018-2020). We collected nasopharyngeal (NP) and oropharyngeal (OP) swabs (n=1558), acute and convalescent sera (n=568), and expectorated sputum (n=153) from participants, and recorded standard-of-care (SOC) NP results (n=805). We measured RSV antibodies by two immunoassays and performed BioFire testing on respiratory specimens. RESULTS: Of 1,558 eligible participants, 92 (5.9%) tested positive for RSV by any diagnostic method. Combined NP/OP PCR yielded 58 positives, while separate NP and OP testing identified 11 additional positives (18.9% increase). Compared to Study NP/OP PCR alone, the addition of paired serology increased RSV detection by 42.9% (28 vs 40) among those with both specimen types, while the addition of SOC swab RT-PCR results increased RSV detection by 25.9% (47 vs 59). CONCLUSIONS: The addition of paired serology testing, SOC swab results, and separate testing of NP and OP swabs improved RSV diagnostic yield in hospitalized adults.

3.
medRxiv ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39040211

ABSTRACT

Background: Severe COVID and multisystem inflammatory syndrome (MIS-C) are characterized by excessive inflammatory cytokines/chemokines. In adults, disease severity is associated with SARS-CoV-2-specific IgG Fc afucosylation, which induces pro-inflammatory cytokine secretion from innate immune cells. This study aimed to define spike IgG Fc glycosylation following SARS-CoV-2 infection in adults and children and following SARS-CoV-2 vaccination in adults and the relationships between glycan modifications and cytokine/chemokine levels. Methods: We analyzed longitudinal (n=146) and cross-sectional (n=49) serum/plasma samples from adult and pediatric COVID patients, MIS-C patients, adult vaccinees, and adult and pediatric healthy controls. We developed methods for characterizing bulk and spike IgG Fc glycosylation by capillary electrophoresis (CE) and measured levels of ten inflammatory cytokines/chemokines by multiplexed ELISA. Results: Spike IgG were more afucosylated than bulk IgG during acute adult COVID and MIS-C. We observed an opposite trend following vaccination, but it was not significant. Spike IgG were more galactosylated and sialylated and less bisected than bulk IgG during adult COVID, with similar trends observed during pediatric COVID/MIS-C and following SARS-CoV-2 vaccination. Spike IgG glycosylation changed with time following adult COVID or vaccination. Afucosylated spike IgG exhibited inverse and positive correlations with inflammatory markers in MIS-C and following vaccination, respectively; galactosylated and sialylated spike IgG inversely correlated with pro-inflammatory cytokines in adult COVID and MIS-C; and bisected spike IgG positively correlated with inflammatory cytokines/chemokines in multiple groups. Conclusions: We identified previously undescribed relationships between spike IgG glycan modifications and inflammatory cytokines/chemokines that expand our understanding of IgG glycosylation changes that may impact COVID and MIS-C immunopathology.

4.
Vaccines (Basel) ; 12(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39066418

ABSTRACT

Vaccine-preventable diseases (VPDs) pose a serious public health concern for people living with HIV (PLH). PLH experience a delayed and weakened response to many vaccines available, compared to the general population. Lower seroconversion rates, along with a decreased efficacy and durability of vaccines, increases the susceptibility of PLH to VPDs. Vaccination guidelines specifically targeting this population have been modified to overcome these challenges. However, vaccine uptake remains suboptimal due to multiple barriers, highlighting the need for further studies and the additional implementation of public health measures specifically tailored to PLH.

5.
Vaccines (Basel) ; 12(7)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39066447

ABSTRACT

Vaccine immunogenicity and reactogenicity depend on recipient and vaccine characteristics. We hypothesized that healthy adults reporting higher reactogenicity from seasonal inactivated influenza vaccine (IIV) developed higher antibody titers compared with those reporting lower reactogenicity. We performed a secondary analysis of a randomized phase 1 trial of a trivalent IIV delivered by microneedle patch (MNP) or intramuscular (IM) injection. We created composite reactogenicity scores as exposure variables and used hemagglutination inhibition (HAI) titers as outcome variables. We used mixed-model analysis of variance to estimate geometric mean titers (GMTs) and titer fold change and modified Poisson generalized estimating equations to estimate risk ratios of seroprotection and seroconversion. Estimates of H3N2 GMTs were associated with the Systemic and Local scores among the IM group. Within the IM group, those with high reaction scores had lower baseline H3N2 GMTs and twice the titer fold change by day 28. Those with high Local scores had a greater probability of seroconversion. These results suggest that heightened reactogenicity to IM IIV is related to low baseline humoral immunity to an included antigen. Participants with greater reactogenicity developed greater titer fold change after 4 weeks, although the response magnitude was similar or lower compared with low-reactogenicity participants.

6.
Article in English | MEDLINE | ID: mdl-38876903

ABSTRACT

Development of a safe and effective human immunodeficiency virus (HIV) vaccine is a persistent challenge despite decades of research. Previous strategies utilizing protein subunit and viral vector vaccines were safe but not protective. Current strategies seek to induce broadly neutralizing antibodies, with multiple early phase trials in progress seeking to achieve this through sequential vaccination, mRNA, or updated viral-vectored vaccines. A safe and effective vaccine is critical to ending the HIV epidemic.

7.
Bioanalysis ; : 1-12, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940371

ABSTRACT

Aim: Serotype-specific assays detecting pneumococcal polysaccharides in bodily fluids are needed to understand the pneumococcal serotype distribution in non-bacteremic pneumonia. Methods: We developed a urine antigen detection assay and using urine samples from adult outpatients without pneumonia developed positivity cutoffs for both a previously published 15-valent and the new 21-valent assay. Clinical sensitivity was confirmed with samples from patients with invasive pneumococcal disease. Results: Total assay precision ranged from 7.6 to 17.8% coefficient of variation while accuracy ranged between 80 and 150% recovery, except for three serotypes where recoveries ranged from 32 to 60%. Clinical sensitivity was 86.4% and specificity was 96.5% across all 30 serotypes. Conclusion: The assay could potentially assess serotype-distribution in non-infected and infected participants with pneumococcal disease.


[Box: see text].

8.
Front Immunol ; 15: 1347926, 2024.
Article in English | MEDLINE | ID: mdl-38903517

ABSTRACT

Introduction: The HVTN 105 vaccine clinical trial tested four combinations of two immunogens - the DNA vaccine DNA-HIV-PT123, and the protein vaccine AIDSVAX B/E. All combinations induced substantial antibody and CD4+ T cell responses in many participants. We have now re-examined the intracellular cytokine staining flow cytometry data using the high-resolution SWIFT clustering algorithm, which is very effective for enumerating rare populations such as antigen-responsive T cells, and also determined correlations between the antibody and T cell responses. Methods: Flow cytometry samples across all the analysis batches were registered using the swiftReg registration tool, which reduces batch variation without compromising biological variation. Registered data were clustered using the SWIFT algorithm, and cluster template competition was used to identify clusters of antigen-responsive T cells and to separate these from constitutive cytokine producing cell clusters. Results: Registration strongly reduced batch variation among batches analyzed across several months. This in-depth clustering analysis identified a greater proportion of responders than the original analysis. A subset of antigen-responsive clusters producing IL-21 was identified. The cytokine patterns in each vaccine group were related to the type of vaccine - protein antigens tended to induce more cells producing IL-2 but not IFN-γ, whereas DNA vaccines tended to induce more IL-2+ IFN-γ+ CD4 T cells. Several significant correlations were identified between specific antibody responses and antigen-responsive T cell clusters. The best correlations were not necessarily observed with the strongest antibody or T cell responses. Conclusion: In the complex HVTN105 dataset, alternative analysis methods increased sensitivity of the detection of antigen-specific T cells; increased the number of identified vaccine responders; identified a small IL-21-producing T cell population; and demonstrated significant correlations between specific T cell populations and serum antibody responses. Multiple analysis strategies may be valuable for extracting the most information from large, complex studies.


Subject(s)
AIDS Vaccines , CD4-Positive T-Lymphocytes , Cytokines , Flow Cytometry , HIV Infections , Humans , AIDS Vaccines/immunology , CD4-Positive T-Lymphocytes/immunology , Flow Cytometry/methods , Cluster Analysis , HIV Infections/immunology , HIV Infections/virology , Cytokines/metabolism , Cytokines/immunology , Immunity, Humoral , HIV Antibodies/immunology , HIV Antibodies/blood , HIV-1/immunology , Vaccines, DNA/immunology , Interleukins/immunology
9.
medRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766048

ABSTRACT

Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140, formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding and immunogenicity in a first-in-healthy adult (n=17), randomized, placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, B-cell and CD4+ T-cell responses emerged post-vaccination. Five vaccinees developed serum autologous tier-2 nAbs (ID50 titer, 1:28-1:8647) after 2-3 doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B-cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes. KEY TAKEAWAY/TAKE-HOME MESSAGES: HIV BG505 SOSIP.664 trimer with novel 3M-052-AF/alum adjuvant in humans appears safe and induces serum neutralizing antibodies to matched clade A, tier 2 virus, that map to diverse Env epitopes with relatively high titers. The novel adjuvant may be an important mediator of vaccine response.

10.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690733

ABSTRACT

BACKGROUNDPatients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODSWe performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.RESULTSIncreasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, formation of neutrophil extracellular traps, and T cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma Igs and B cells and dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to failure of viral clearance in patients with fatal illness.CONCLUSIONOur longitudinal multiomics profiling study revealed temporal coordination across diverse omics that potentially explain the disease progression, providing insights that can inform the targeted development of therapies for patients hospitalized with COVID-19, especially those who are critically ill.TRIAL REGISTRATIONClinicalTrials.gov NCT04378777.FUNDINGNIH (5R01AI135803-03, 5U19AI118608-04, 5U19AI128910-04, 4U19AI090023-11, 4U19AI118610-06, R01AI145835-01A1S1, 5U19AI062629-17, 5U19AI057229-17, 5U19AI125357-05, 5U19AI128913-03, 3U19AI077439-13, 5U54AI142766-03, 5R01AI104870-07, 3U19AI089992-09, 3U19AI128913-03, and 5T32DA018926-18); NIAID, NIH (3U19AI1289130, U19AI128913-04S1, and R01AI122220); and National Science Foundation (DMS2310836).


Subject(s)
COVID-19 , Severity of Illness Index , Adult , Aged , Female , Humans , Male , Middle Aged , COVID-19/immunology , COVID-19/mortality , COVID-19/blood , Cytokines/blood , Cytokines/immunology , Longitudinal Studies , Multiomics
11.
JAMA Netw Open ; 7(5): e2412835, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38780941

ABSTRACT

Importance: SARS-CoV-2 viral load (VL) in the nasopharynx is difficult to quantify and standardize across settings, but it may inform transmission potential and disease severity. Objective: To characterize VL at COVID-19 diagnosis among previously uninfected and unvaccinated individuals by evaluating the association of demographic and clinical characteristics, viral variant, and trial with VL, as well as the ability of VL to predict severe disease. Design, Setting, and Participants: This secondary cross-protocol analysis used individual-level data from placebo recipients from 4 harmonized, phase 3 COVID-19 vaccine efficacy trials sponsored by Moderna, AstraZeneca, Janssen, and Novavax. Participants were SARS-CoV-2 negative at baseline and acquired COVID-19 during the blinded phase of the trials. The setting included the US, Brazil, South Africa, Colombia, Argentina, Peru, Chile, and Mexico; start dates were July 27, 2020, to December 27, 2020; data cutoff dates were March 26, 2021, to July 30, 2021. Statistical analysis was performed from November 2022 to June 2023. Main Outcomes and Measures: Linear regression was used to assess the association of demographic and clinical characteristics, viral variant, and trial with polymerase chain reaction-measured log10 VL in nasal and/or nasopharyngeal swabs taken at the time of COVID-19 diagnosis. Results: Among 1667 participants studied (886 [53.1%] male; 995 [59.7%] enrolled in the US; mean [SD] age, 46.7 [14.7] years; 204 [12.2%] aged 65 years or older; 196 [11.8%] American Indian or Alaska Native, 150 [9%] Black or African American, 1112 [66.7%] White; 762 [45.7%] Hispanic or Latino), median (IQR) log10 VL at diagnosis was 6.18 (4.66-7.12) log10 copies/mL. Participant characteristics and viral variant explained only 5.9% of the variability in VL. The independent factor with the highest observed differences was trial: Janssen participants had 0.54 log10 copies/mL lower mean VL vs Moderna participants (95% CI, 0.20 to 0.87 log10 copies/mL lower). In the Janssen study, which captured the largest number of COVID-19 events and variants and used the most intensive post-COVID surveillance, neither VL at diagnosis nor averaged over days 1 to 28 post diagnosis was associated with COVID-19 severity. Conclusions and Relevance: In this study of placebo recipients from 4 randomized phase 3 trials, high variability was observed in SARS-CoV-2 VL at the time of COVID-19 diagnosis, and only a fraction was explained by individual participant characteristics or viral variant. These results suggest challenges for future studies of interventions seeking to influence VL and elevates the importance of standardized methods for specimen collection and viral load quantitation.


Subject(s)
COVID-19 , Nasopharynx , SARS-CoV-2 , Viral Load , Humans , Nasopharynx/virology , Viral Load/statistics & numerical data , Male , Female , Adult , Middle Aged , COVID-19 Vaccines/therapeutic use , Randomized Controlled Trials as Topic , United States , Aged
12.
Sci Immunol ; 9(94): eadi8039, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579013

ABSTRACT

Vaccine adjuvants increase the breadth of serum antibody responses, but whether this is due to the generation of antigen-specific B cell clones with distinct specificities or the maturation of memory B cell clones that produce broadly cross-reactive antibodies is unknown. Here, we longitudinally analyzed immune responses in healthy adults after two-dose vaccination with either a virus-like particle COVID-19 vaccine (CoVLP), CoVLP adjuvanted with AS03 (CoVLP+AS03), or a messenger RNA vaccination (mRNA-1273). CoVLP+AS03 enhanced the magnitude and durability of circulating antibodies and antigen-specific CD4+ T cell and memory B cell responses. Antigen-specific CD4+ T cells in the CoVLP+AS03 group at day 42 correlated with antigen-specific memory B cells at 6 months. CoVLP+AS03 induced memory B cell responses, which accumulated somatic hypermutations over 6 months, resulting in enhanced neutralization breadth of monoclonal antibodies. Furthermore, the fraction of broadly neutralizing antibodies encoded by memory B cells increased between day 42 and 6 months. These results indicate that AS03 enhances the antigenic breadth of B cell memory at the clonal level and induces progressive maturation of the B cell response.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Polysorbates , Squalene , alpha-Tocopherol , Adult , Humans , Memory B Cells , COVID-19 Vaccines , Antibodies, Viral , COVID-19/prevention & control , Drug Combinations
13.
Sci Transl Med ; 16(743): eadj5154, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630846

ABSTRACT

Age is a major risk factor for severe coronavirus disease 2019 (COVID-19), yet the mechanisms behind this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host immune response in the blood and the upper airway, as well as the nasal microbiome in a prospective, multicenter cohort of 1031 vaccine-naïve patients hospitalized for COVID-19 between 18 and 96 years old. We performed mass cytometry, serum protein profiling, anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays, and blood and nasal transcriptomics. We found that older age correlated with increased SARS-CoV-2 viral abundance upon hospital admission, delayed viral clearance, and increased type I interferon gene expression in both the blood and upper airway. We also observed age-dependent up-regulation of innate immune signaling pathways and down-regulation of adaptive immune signaling pathways. Older adults had lower naïve T and B cell populations and higher monocyte populations. Over time, older adults demonstrated a sustained induction of pro-inflammatory genes and serum chemokines compared with younger individuals, suggesting an age-dependent impairment in inflammation resolution. Transcriptional and protein biomarkers of disease severity differed with age, with the oldest adults exhibiting greater expression of pro-inflammatory genes and proteins in severe disease. Together, our study finds that aging is associated with impaired viral clearance, dysregulated immune signaling, and persistent and potentially pathologic activation of pro-inflammatory genes and proteins.


Subject(s)
COVID-19 , Humans , Aged , Adolescent , Young Adult , Adult , Middle Aged , Aged, 80 and over , SARS-CoV-2 , Prospective Studies , Multiomics , Chemokines
14.
Clin Infect Dis ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598658

ABSTRACT

BACKGROUND: Although the SARS-CoV-2 vaccines are highly efficacious at preventing severe disease in the general population, current data are lacking regarding vaccine efficacy (VE) for individuals with mild immunocompromising conditions. METHODS: A post-hoc, cross-protocol analysis of participant-level data from the blinded phase of four randomized, placebo-controlled, COVID-19 vaccine phase 3 trials (Moderna, AstraZeneca, Janssen, and Novavax) was performed. We defined a "tempered immune system" (TIS) variable via a consensus panel based on medical history and medications to determine VE against symptomatic and severe COVID-19 cases in TIS participants versus non-TIS (NTIS) individuals starting at 14 days after completion of the primary series through the blinded phase for each of the four trials. An analysis of participants living with well-controlled HIV was conducted using the same methods. RESULTS: 3,852/30,351 (12.7%) Moderna participants, 3,088/29,868 (10.3%) Novavax participants, 3,549/32,380 (11.0%) AstraZeneca participants, and 5,047/43,788 (11.5%) Janssen participants were identified as having a TIS. Most TIS conditions (73.9%) were due to metabolism and nutritional disorders. Vaccination (versus placebo) significantly reduced the likelihood of symptomatic and severe COVID-19 for all participants for each trial. VE was not significantly different for TIS participants vs NTIS for either symptomatic or severe COVID-19 for each trial, nor was VE significantly different in the symptomatic endpoint for participants with HIV. CONCLUSIONS: For individuals with mildly immunocompromising conditions, there is no evidence of differences in VE against symptomatic or severe COVID-19 compared to those with non-tempered immune systems in the four COVID-19 vaccine randomized controlled efficacy trials.

15.
Clin Infect Dis ; 78(6): 1757-1768, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38537255

ABSTRACT

INTRODUCTION: A surge of human influenza A(H7N9) cases began in 2016 in China from an antigenically distinct lineage. Data are needed about the safety and immunogenicity of 2013 and 2017 A(H7N9) inactivated influenza vaccines (IIVs) and the effects of AS03 adjuvant, prime-boost interval, and priming effects of 2013 and 2017 A(H7N9) IIVs. METHODS: Healthy adults (n = 180), ages 19-50 years, were enrolled into this partially blinded, randomized, multicenter phase 2 clinical trial. Participants were randomly assigned to 1 of 6 vaccination groups evaluating homologous versus heterologous prime-boost strategies with 2 different boost intervals (21 vs 120 days) and 2 dosages (3.75 or 15 µg of hemagglutinin) administered with or without AS03 adjuvant. Reactogenicity, safety, and immunogenicity measured by hemagglutination inhibition and neutralizing antibody titers were assessed. RESULTS: Two doses of A(H7N9) IIV were well tolerated, and no safety issues were identified. Although most participants had injection site and systemic reactogenicity, these symptoms were mostly mild to moderate in severity; injection site reactogenicity was greater in vaccination groups receiving adjuvant. Immune responses were greater after an adjuvanted second dose, and with a longer interval between prime and boost. The highest hemagglutination inhibition geometric mean titer (95% confidence interval) observed against the 2017 A(H7N9) strain was 133.4 (83.6-212.6) among participants who received homologous, adjuvanted 3.75 µg + AS03/2017 doses with delayed boost interval. CONCLUSIONS: Administering AS03 adjuvant with the second H7N9 IIV dose and extending the boost interval to 4 months resulted in higher peak antibody responses. These observations can broadly inform strategic approaches for pandemic preparedness. Clinical Trials Registration. NCT03589807.


Subject(s)
Antibodies, Viral , Immunization, Secondary , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Vaccines, Inactivated , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/adverse effects , Adult , Male , Female , Middle Aged , Influenza A Virus, H7N9 Subtype/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Antibodies, Viral/blood , Influenza, Human/prevention & control , Influenza, Human/immunology , Young Adult , Immunization Schedule , Hemagglutination Inhibition Tests , United States , Immunogenicity, Vaccine , Antibodies, Neutralizing/blood , Polysorbates/administration & dosage , Polysorbates/adverse effects , alpha-Tocopherol/administration & dosage , alpha-Tocopherol/adverse effects , Squalene/administration & dosage , Squalene/adverse effects , Squalene/immunology , Healthy Volunteers , Drug Combinations , Adjuvants, Vaccine/administration & dosage , Vaccination/methods , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects
16.
J Infect Dis ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536442

ABSTRACT

INTRODUCTION: Establishing the safety and immunogenicity of a hepatitis E virus vaccine in multiple populations could facilitate broader access and prevent maternal and infant mortality. METHODS: We conducted a phase 1, randomized, double-blinded, placebo-controlled (4:1 vaccine: placebo) trial of 30 µg HEV-239 (Hecolin®, Xiamen Innovax Biotech Company Limited, China) administered intramuscularly in healthy US adults aged 18-45 years. Participants were vaccinated on days 1, 29, and 180. Participants reported solicited local and systemic reactions for 7 days following vaccination and were followed through 12 months after enrollment for safety and immunogenicity (IgG, IgM). RESULTS: Solicited local and systemic reactions between treatment and placebo group were similar and overall mild. No participants experienced serious adverse events related to HEV-239. All participants receiving HEV-239 seroconverted at one month following the first dose and remained seropositive throughout the study. HEV-239 elicited a robust hepatitis E IgG response that peaked one month following the second dose (Geometric Mean Concentration (GMC) 6.16; 95% CI 4.40-8.63), was boosted with the third dose (GMC 11.50; 95% CI 7.90-16.75) and persisted through 6 months. CONCLUSIONS: HEV-239 is safe and elicits a durable immune response through at least 6 months after the third dose in healthy US adults. CLINICAL TRIALS REGISTRATION: NCT03827395. Safety Study of Hepatitis E Vaccine (HEV239) - Full Text View - ClinicalTrials.gov.

17.
NPJ Vaccines ; 9(1): 67, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553525

ABSTRACT

Ebola virus disease (EVD) is a filoviral infection caused by virus species of the Ebolavirus genus including Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). We investigated the safety and immunogenicity of a heterologous prime-boost regimen involving a chimpanzee adenovirus 3 vectored Ebola vaccine [either monovalent (cAd3-EBOZ) or bivalent (cAd3-EBO)] prime followed by a recombinant modified vaccinia virus Ankara EBOV vaccine (MVA-EbolaZ) boost in two phase 1/1b randomized open-label clinical trials in healthy adults in the United States (US) and Uganda (UG). Trial US (NCT02408913) enrolled 140 participants, including 26 EVD vaccine-naïve and 114 cAd3-Ebola-experienced participants (April-November 2015). Trial UG (NCT02354404) enrolled 90 participants, including 60 EVD vaccine-naïve and 30 DNA Ebola vaccine-experienced participants (February-April 2015). All tested vaccines and regimens were safe and well tolerated with no serious adverse events reported related to study products. Solicited local and systemic reactogenicity was mostly mild to moderate in severity. The heterologous prime-boost regimen was immunogenic, including induction of durable antibody responses which peaked as early as two weeks and persisted up to one year after each vaccination. Different prime-boost intervals impacted the magnitude of humoral and cellular immune responses. The results from these studies demonstrate promising implications for use of these vaccines in both prophylactic and outbreak settings.

18.
medRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38405760

ABSTRACT

Age is a major risk factor for severe coronavirus disease-2019 (COVID-19), yet the mechanisms responsible for this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host and viral dynamics in a prospective, multicenter cohort of 1,031 patients hospitalized for COVID-19, ranging from 18 to 96 years of age. We performed blood transcriptomics and nasal metatranscriptomics, and measured peripheral blood immune cell populations, inflammatory protein expression, anti-SARS-CoV-2 antibodies, and anti-interferon (IFN) autoantibodies. We found that older age correlated with an increased SARS-CoV-2 viral load at the time of admission, and with delayed viral clearance over 28 days. This contributed to an age-dependent increase in type I IFN gene expression in both the respiratory tract and blood. We also observed age-dependent transcriptional increases in peripheral blood IFN-γ, neutrophil degranulation, and Toll like receptor (TLR) signaling pathways, and decreases in T cell receptor (TCR) and B cell receptor signaling pathways. Over time, older adults exhibited a remarkably sustained induction of proinflammatory genes (e.g., CXCL6) and serum chemokines (e.g., CXCL9) compared to younger individuals, highlighting a striking age-dependent impairment in inflammation resolution. Augmented inflammatory signaling also involved the upper airway, where aging was associated with upregulation of TLR, IL17, type I IFN and IL1 pathways, and downregulation TCR and PD-1 signaling pathways. Metatranscriptomics revealed that the oldest adults exhibited disproportionate reactivation of herpes simplex virus and cytomegalovirus in the upper airway following hospitalization. Mass cytometry demonstrated that aging correlated with reduced naïve T and B cell populations, and increased monocytes and exhausted natural killer cells. Transcriptional and protein biomarkers of disease severity markedly differed with age, with the oldest adults exhibiting greater expression of TLR and inflammasome signaling genes, as well as proinflammatory proteins (e.g., IL6, CXCL8), in severe COVID-19 compared to mild/moderate disease. Anti-IFN autoantibody prevalence correlated with both age and disease severity. Taken together, this work profiles both host and microbe in the blood and airway to provide fresh insights into aging-related immune changes in a large cohort of vaccine-naïve COVID-19 patients. We observed age-dependent immune dysregulation at the transcriptional, protein and cellular levels, manifesting in an imbalance of inflammatory responses over the course of hospitalization, and suggesting potential new therapeutic targets.

19.
bioRxiv ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38370837

ABSTRACT

The rapid emergence of divergent SARS-CoV-2 variants has led to an update of the COVID-19 booster vaccine to a monovalent version containing the XBB.1.5 spike. To determine the neutralization breadth following booster immunization, we collected blood samples from 24 individuals pre- and post-XBB.1.5 mRNA booster vaccination (∼1 month). The XBB.1.5 booster improved both neutralizing activity against the ancestral SARS-CoV-2 strain (WA1) and the circulating Omicron variants, including EG.5.1, HK.3, HV.1, XBB.1.5 and JN.1. Relative to the pre-boost titers, the XBB.1.5 monovalent booster induced greater total IgG and IgG subclass binding, particular IgG4, to the XBB.1.5 spike as compared to the WA1 spike. We evaluated antigen-specific memory B cells (MBCs) using either spike or receptor binding domain (RBD) probes and found that the monovalent booster largely increases non-RBD cross-reactive MBCs. These data suggest that the XBB.1.5 monovalent booster induces cross-reactive antibodies that neutralize XBB.1.5 and related Omicron variants.

20.
Nat Commun ; 15(1): 404, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195739

ABSTRACT

The glycosylation of IgG plays a critical role during human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, activating immune cells and inducing cytokine production. However, the role of IgM N-glycosylation has not been studied during human acute viral infection. The analysis of IgM N-glycosylation from healthy controls and hospitalized coronavirus disease 2019 (COVID-19) patients reveals increased high-mannose and sialylation that correlates with COVID-19 severity. These trends are confirmed within SARS-CoV-2-specific immunoglobulin N-glycan profiles. Moreover, the degree of total IgM mannosylation and sialylation correlate significantly with markers of disease severity. We link the changes of IgM N-glycosylation with the expression of Golgi glycosyltransferases. Lastly, we observe antigen-specific IgM antibody-dependent complement deposition is elevated in severe COVID-19 patients and modulated by exoglycosidase digestion. Taken together, this work links the IgM N-glycosylation with COVID-19 severity and highlights the need to understand IgM glycosylation and downstream immune function during human disease.


Subject(s)
COVID-19 , Humans , Glycosylation , SARS-CoV-2 , Glycosyltransferases , Complement System Proteins , Immunoglobulin M
SELECTION OF CITATIONS
SEARCH DETAIL