Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Muscle Nerve ; 70(2): 217-225, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38837773

ABSTRACT

INTRODUCTION/AIMS: Many people living with amyotrophic lateral sclerosis (PALS) report restrictions in their day-to-day communication (communicative participation). However, little is known about which speech features contribute to these restrictions. This study evaluated the effects of common speech symptoms in PALS (reduced overall speaking rate, slowed articulation rate, and increased pausing) on communicative participation restrictions. METHODS: Participants completed surveys (the Communicative Participation Item Bank-short form; the self-entry version of the ALS Functional Rating Scale-Revised) and recorded themselves reading the Bamboo Passage aloud using a smartphone app. Rate and pause measures were extracted from the recordings. The association of various demographic, clinical, self-reported, and acoustic speech features with communicative participation was evaluated with bivariate correlations. The contribution of salient rate and pause measures to communicative participation was assessed using multiple linear regression. RESULTS: Fifty seven people living with ALS participated in the study (mean age = 61.1 years). Acoustic and self-report measures of speech and bulbar function were moderately to highly associated with communicative participation (Spearman rho coefficients ranged from rs = 0.48 to rs = 0.77). A regression model including participant age, sex, articulation rate, and percent pause time accounted for 57% of the variance of communicative participation ratings. DISCUSSION: Even though PALS with slowed articulation rate and increased pausing may convey their message clearly, these speech features predict communicative participation restrictions. The identification of quantitative speech features, such as articulation rate and percent pause time, is critical to facilitating early and targeted intervention and for monitoring bulbar decline in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/psychology , Female , Male , Middle Aged , Aged , Speech/physiology , Adult , Communication , Self Report
2.
Brain Lang ; 253: 105417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703523

ABSTRACT

We tested the hypothesis, generated from the Gradient Order Directions Into Velocities of Articulators (GODIVA) model, that adults who stutter (AWS) may comprise subtypes based on differing connectivity within the cortico-basal ganglia planning or motor loop. Resting state functional connectivity from 91 AWS and 79 controls was measured for all GODIVA model connections. Based on a principal components analysis, two connections accounted for most of the connectivity variability in AWS: left thalamus - left posterior inferior frontal sulcus (planning loop component) and left supplementary motor area - left ventral premotor cortex (motor loop component). A k-means clustering algorithm using the two connections revealed three clusters of AWS. Cluster 1 was significantly different from controls in both connections; Cluster 2 was significantly different in only the planning loop; and Cluster 3 was significantly different in only the motor loop. These findings suggest the presence of planning and motor subtypes of stuttering.


Subject(s)
Stuttering , Humans , Stuttering/physiopathology , Stuttering/diagnostic imaging , Male , Adult , Female , Magnetic Resonance Imaging , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Young Adult , Brain/physiopathology , Brain/diagnostic imaging , Middle Aged , Brain Mapping , Rest/physiology
3.
Parkinsonism Relat Disord ; 120: 105991, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38184995

ABSTRACT

INTRODUCTION: X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disorder that may result in severe speech impairment. The literature suggests that there are differences in the speech of individuals with XDP and healthy controls. This study aims to examine the motor speech characteristics of the mixed dystonia-parkinsonism phase of XDP. METHOD: We extracted acoustic features representing coordination, consistency, speed, precision, and rate from 26 individuals with XDP and 26 controls using Praat, MATLAB, and R software. Group demographics were compared using descriptive statistics. A one-way analysis of variance (ANOVA) with Tukey's post hoc test was used to test for acoustic differences between the two groups. RESULTS: The XDP group had significantly lower consistency, speed, precision, and rate than controls (p < 0.05). For coordination, the XDP group had a smaller ratio of pause duration during transitions when compared to controls. DISCUSSION: To our knowledge, this study is the first to describe the motor speech characteristics of the mixed dystonia-parkinsonism phase of XDP. The motor speech of mixed dystonia-parkinsonism XDP is similar to prior characterizations of mixed hyperkinetic-hypokinetic dysarthria with noted differences in articulatory coordination, consistency, speed, precision, and rate from healthy controls. Identifying the motor speech components of all three phenotypes of XDP (i.e., dystonia-dominant phase, parkinsonism-dominant phase, and mixed dystonia-parkinsonism phase) is needed to establish markers of speech impairment to track disease progression.


Subject(s)
Dystonia , Dystonic Disorders , Genetic Diseases, X-Linked , Parkinsonian Disorders , Humans , Dystonia/genetics , Dystonic Disorders/genetics , Genetic Diseases, X-Linked/complications , Genetic Diseases, X-Linked/genetics , Parkinsonian Disorders/genetics , Dysarthria
4.
Clin Linguist Phon ; 38(3): 227-248, 2024 03 03.
Article in English | MEDLINE | ID: mdl-37122073

ABSTRACT

The purpose of this study was to examine how neurodegeneration secondary to amyotrophic lateral sclerosis (ALS) impacts speech sound accuracy over time and how speech sound accuracy, in turn, is related to speech intelligibility. Twenty-one participants with ALS read the Bamboo Passage over multiple data collection sessions across several months. Phonemic and orthographic transcriptions were completed for all speech samples. The percentage of phonemes accurately produced was calculated across each phoneme, sound class (i.e. consonants versus vowels), and distinctive feature (i.e. features involved in Manner of Articulation, Place of Articulation, Laryngeal Voicing, Tongue Height, and Tongue Advancement). Intelligibility was determined by calculating the percentage of words correctly transcribed orthographically by naive listeners. Linear mixed effects models were conducted to assess the decline of each distinctive feature over time and its impact on intelligibility. The results demonstrated that overall phonemic production accuracy had a nonlinear relationship with speech intelligibility and that a subset of features (i.e. those dependent on precise lingual and labial constriction and/or extensive lingual and labial movement) were more important for intelligibility and were more impacted over time than other features. Furthermore, findings revealed that consonants were more strongly associated with intelligibility than vowels, but consonants did not significantly differ from vowels in their decline over time. These findings have the potential to (1) strengthen mechanistic understanding of the physiological constraints imposed by neuronal degeneration on speech production and (2) inform the timing and selection of treatment and assessment targets for individuals with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Voice , Humans , Speech Intelligibility/physiology , Phonetics , Amyotrophic Lateral Sclerosis/complications , Movement , Speech Production Measurement
5.
J Speech Lang Hear Res ; 66(3): 872-887, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36802910

ABSTRACT

PURPOSE: Identifying efficacious measures to characterize dysphonia in complex neurodegenerative diseases is key to optimal assessment and intervention. This study evaluates the validity and sensitivity of acoustic features of phonatory disruption in amyotrophic lateral sclerosis (ALS). METHOD: Forty-nine individuals with ALS (40-79 years old) were audio-recorded while producing a sustained vowel and continuous speech. Perturbation/noise-based (jitter, shimmer, and harmonics-to-noise ratio) and cepstral/spectral (cepstral peak prominence, low-high spectral ratio, and related features) acoustic measures were extracted. The criterion validity of each measure was assessed using correlations with perceptual voice ratings provided by three speech-language pathologists. Diagnostic accuracy of the acoustic features was evaluated using area-under-the-curve analysis. RESULTS: Perturbation/noise-based and cepstral/spectral features extracted from /a/ were significantly correlated with listener ratings of roughness, breathiness, strain, and overall dysphonia. Fewer and smaller correlations between cepstral/spectral measures and perceptual ratings were observed for the continuous speech task, although post hoc analyses revealed stronger correlations in speakers with less perceptually impaired speech. Area-under-the-curve analyses revealed that multiple acoustic features, particularly from the sustained vowel task, adequately differentiated between individuals with ALS with and without perceptually dysphonic voices. CONCLUSIONS: Our findings support using both perturbation/noise-based and cepstral/spectral measures of sustained /a/ to assess phonatory quality in ALS. Results from the continuous speech task suggest that multisubsystem involvement impacts cepstral/spectral analyses in complex motor speech disorders such as ALS. Further investigation of the validity and sensitivity of cepstral/spectral measures during continuous speech in ALS is warranted.


Subject(s)
Amyotrophic Lateral Sclerosis , Dysphonia , Humans , Adult , Middle Aged , Aged , Dysphonia/diagnosis , Dysphonia/etiology , Amyotrophic Lateral Sclerosis/complications , Speech Acoustics , Voice Quality , Acoustics , Speech Production Measurement/methods
6.
Int J Speech Lang Pathol ; 25(4): 486-499, 2023 08.
Article in English | MEDLINE | ID: mdl-36001500

ABSTRACT

PURPOSE: Neurodegenerative motor diseases (NMDs) have devastating effects on the lives of patients and their loved ones, in part due to the impact of neurologic abnormalities on speech, which significantly limits functional communication. Clinical speech researchers have thus spent decades investigating speech features in populations suffering from NMDs. Features of impaired articulatory function are of particular interest given their detrimental impact on intelligibility, their ability to encode a variety of distinct movement disorders, and their potential as diagnostic indicators of neurodegenerative diseases. The objectives of this scoping review were to identify (1) which components of articulation (i.e. coordination, consistency, speed, precision, and repetition rate) are the most represented in the acoustic literature on NMDs; (2) which acoustic articulatory features demonstrate the most potential for detecting speech motor dysfunction in NMDs; and (3) which articulatory components are the most impaired within each NMD. METHOD: This review examined literature published between 1976 and 2020. Studies were identified from six electronic databases using predefined key search terms. The first research objective was addressed using a frequency count of studies investigating each articulatory component, while the second and third objectives were addressed using meta-analyses. RESULT: Findings from 126 studies revealed a considerable emphasis on articulatory precision. Of the 24 features included in the meta-analyses, vowel dispersion/distance and stop gap duration exhibited the largest effects when comparing the NMD population to controls. The meta-analyses also revealed divergent patterns of articulatory performance across disease types, providing evidence of unique profiles of articulatory impairment. CONCLUSION: This review illustrates the current state of the literature on acoustic articulatory features in NMDs. By highlighting the areas of need within each articulatory component and disease group, this work provides a foundation on which clinical researchers, speech scientists, neurologists, and computer science engineers can develop research questions that will both broaden and deepen the understanding of articulatory impairments in NMDs.


Subject(s)
Neurodegenerative Diseases , Speech Intelligibility , Humans , Speech Acoustics , Acoustics , Articulation Disorders , Neurodegenerative Diseases/complications
7.
J Neural Transm (Vienna) ; 129(12): 1487-1511, 2022 12.
Article in English | MEDLINE | ID: mdl-36305960

ABSTRACT

Despite the impacts of neurodegeneration on speech function, little is known about how to comprehensively characterize the resulting speech abnormalities using a set of objective measures. Quantitative phenotyping of speech motor impairments may have important implications for identifying clinical syndromes and their underlying etiologies, monitoring disease progression over time, and improving treatment efficacy. The goal of this research was to investigate the validity and classification accuracy of comprehensive acoustic-based articulatory phenotypes in speakers with distinct neurodegenerative diseases. Articulatory phenotypes were characterized based on acoustic features that were selected to represent five components of motor performance: Coordination, Consistency, Speed, Precision, and Rate. The phenotypes were first used to characterize the articulatory abnormalities across four progressive neurologic diseases known to have divergent speech motor deficits: amyotrophic lateral sclerosis (ALS), progressive ataxia (PA), Parkinson's disease (PD), and the nonfluent variant of primary progressive aphasia and progressive apraxia of speech (nfPPA + PAOS). We then examined the efficacy of articulatory phenotyping for disease classification. Acoustic analyses were conducted on audio recordings of 217 participants (i.e., 46 ALS, 52 PA, 60 PD, 20 nfPPA + PAOS, and 39 controls) during a sequential speech task. Results revealed evidence of distinct articulatory phenotypes for the four clinical groups and that the phenotypes demonstrated strong classification accuracy for all groups except ALS. Our results highlight the phenotypic variability present across neurodegenerative diseases, which, in turn, may inform (1) the differential diagnosis of neurological diseases and (2) the development of sensitive outcome measures for monitoring disease progression or assessing treatment efficacy.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Parkinson Disease , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/complications , Speech Disorders/etiology , Parkinson Disease/complications , Disease Progression , Acoustics , Speech
8.
Cogn Res Princ Implic ; 7(1): 73, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35907167

ABSTRACT

Mask-wearing during the COVID-19 pandemic has prompted a growing interest in the functional impact of masks on speech and communication. Prior work has shown that masks dampen sound, impede visual communication cues, and reduce intelligibility. However, more work is needed to understand how speakers change their speech while wearing a mask and to identify strategies to overcome the impact of wearing a mask. Data were collected from 19 healthy adults during a single in-person session. We investigated the effects of wearing a KN95 mask on speech intelligibility, as judged by two speech-language pathologists, examined speech kinematics and acoustics associated with mask-wearing, and explored KN95 acoustic filtering. We then considered the efficacy of three speaking strategies to improve speech intelligibility: Loud, Clear, and Slow speech. To inform speaker strategy recommendations, we related findings to self-reported speaker effort. Results indicated that healthy speakers could compensate for the presence of a mask and achieve normal speech intelligibility. Additionally, we showed that speaking loudly or clearly-and, to a lesser extent, slowly-improved speech intelligibility. However, using these strategies may require increased physical and cognitive effort and should be used only when necessary. These results can inform recommendations for speakers wearing masks, particularly those with communication disorders (e.g., dysarthria) who may struggle to adapt to a mask but can respond to explicit instructions. Such recommendations may further help non-native speakers and those communicating in a noisy environment or with listeners with hearing loss.


Subject(s)
COVID-19 , Communication Disorders , Adult , COVID-19/prevention & control , Cognition , Humans , Masks , N95 Respirators , Pandemics , Speech Intelligibility
9.
Microorganisms ; 10(2)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35208672

ABSTRACT

A robust cell envelope is the first line of protection for an infecting pathogen when encountering the immune defense of its host. In Gram-positive organisms, LytR-CpsA-Psr (LCP) family proteins play a major role in the synthesis and assembly of the cell envelope. While these proteins could be considered for potential new drug targets, not enough is known about how they function to support the integrity of the cell wall. Streptococcus agalactiae (group B streptococcus or GBS) is known to encode at least three LCP family proteins, including CpsA, LytR (BrpA) and Psr. Using strains of GBS that have mutations in two of the three LCP proteins, we were able to determine a role for these proteins in GBS cell wall integrity. The results presented here demonstrate that the absence of Psr results in a decreased growth rate, decreased viability over time, inconsistent cocci morphology and diminished cell wall integrity, as well as an increased penicillin susceptibility, decreased capsule levels and attenuation in virulence in a zebrafish model of infectious disease. A strain that is missing two of the LCP family proteins, CpsA and Psr, exhibits an increase in these defective phenotypes, indicating that CpsA and Psr are partially redundant in function.

10.
Arthritis Rheumatol ; 74(11): 1786-1795, 2022 11.
Article in English | MEDLINE | ID: mdl-35166073

ABSTRACT

OBJECTIVE: The importance of interleukin-17A (IL-17A) in the pathogenesis of axial spondyloarthritis (SpA) has been demonstrated by the success of IL-17A blockade. However, the nature of the cell populations that produce this important proinflammatory cytokine remains poorly defined. We undertook this study to characterize the major IL-17A-producing blood cell populations in the peripheral blood of patients with axial SpA, with a focus on mucosal-associated invariant T (MAIT) cells, a population known to be capable of producing IL-17. METHODS: We evaluated IL-17A production from 5 sorted peripheral blood cell populations, namely, MAIT cells, γδ T cells, CD4+ T cells, CD8+ T cells, and neutrophils, before and after stimulation with phorbol myristate acetate, the calcium ionophore A23187, and ß-1,3-glucan. Expression of IL-17A transcripts and protein were determined using nCounter and ultra-sensitive Simoa technology, respectively. MAIT cells from the axial entheses of non-axial SpA control patients (n = 5) were further characterized using flow cytometric immunophenotyping and quantitative polymerase chain reaction, and the production of IL-17 was assessed following stimulation. RESULTS: On a per-cell basis, MAIT cells from peripheral blood produced the most IL-17A compared to CD4+ T cells (P < 0.01), CD8+ T cells (P < 0.0001), and γδ T cells (P < 0.0001). IL-17A was not produced by neutrophils. Gene expression analysis also revealed significantly higher expression of IL17A and IL23R in MAIT cells. Stimulation of peripheral blood MAIT cells with anti-CD3/CD28 and IL-7 and/or IL-18 induced strong expression of IL17F. MAIT cells were present in the normal, unaffected entheses of control patients who did not have axial SpA and showed elevated AHR, JAK1, STAT4, and TGFB1 transcript expression with inducible IL-17A protein. IL-18 protein expression was evident in spinal enthesis digests. CONCLUSION: Both peripheral blood MAIT cells and resident MAIT cells in normal axial entheses contribute to the production of IL-17 and may play important roles in the pathogenesis of axial SpA.


Subject(s)
Mucosal-Associated Invariant T Cells , Spondylarthritis , Humans , Interleukin-17/metabolism , Mucosal-Associated Invariant T Cells/metabolism , Interleukin-18/metabolism , CD8-Positive T-Lymphocytes/metabolism , Spondylarthritis/metabolism
12.
Front Comput Sci ; 42022 Apr.
Article in English | MEDLINE | ID: mdl-37860708

ABSTRACT

Despite significant advancements in automatic speech recognition (ASR) technology, even the best performing ASR systems are inadequate for speakers with impaired speech. This inadequacy may be, in part, due to the challenges associated with acquiring a sufficiently diverse training sample of disordered speech. Speakers with dysarthria, which refers to a group of divergent speech disorders secondary to neurologic injury, exhibit highly variable speech patterns both within and across individuals. This diversity is currently poorly characterized and, consequently, difficult to adequately represent in disordered speech ASR corpora. In this paper, we consider the variable expressions of dysarthria within the context of established clinical taxonomies (e.g., Darley, Aronson, and Brown dysarthria subtypes). We also briefly consider past and recent efforts to capture this diversity quantitatively using speech analytics. Understanding dysarthria diversity from the clinical perspective and how this diversity may impact ASR performance could aid in (1) optimizing data collection strategies for minimizing bias; (2) ensuring representative ASR training sets; and (3) improving generalization of ASR across users and performance for difficult-to-recognize speakers. Our overarching goal is to facilitate the development of robust ASR systems for dysarthric speech using clinical knowledge.

13.
J Speech Lang Hear Res ; 64(12): 4736-4753, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34735295

ABSTRACT

PURPOSE: This study investigated the criterion (analytical and clinical) and construct (divergent) validity of a novel, acoustic-based framework composed of five key components of motor control: Coordination, Consistency, Speed, Precision, and Rate. METHOD: Acoustic and kinematic analyses were performed on audio recordings from 22 subjects with amyotrophic lateral sclerosis during a sequential motion rate task. Perceptual analyses were completed by two licensed speech-language pathologists, who rated each subject's speech on the five framework components and their overall severity. Analytical and clinical validity were assessed by comparing performance on the acoustic features to their kinematic correlates and to clinician ratings of the five components, respectively. Divergent validity of the acoustic-based framework was then assessed by comparing performance on each pair of acoustic features to determine whether the features represent distinct articulatory constructs. Bivariate correlations and partial correlations with severity as a covariate were conducted for each comparison. RESULTS: Results revealed moderate-to-strong analytical validity for every acoustic feature, both with and without controlling for severity, and moderate-to-strong clinical validity for all acoustic features except Coordination, without controlling for severity. When severity was included as a covariate, the strong associations for Speed and Precision became weak. Divergent validity was supported by weak-to-moderate pairwise associations between all acoustic features except Speed (second-formant [F2] slope of consonant transition) and Precision (between-consonant variability in F2 slope). CONCLUSIONS: This study demonstrated that the acoustic-based framework has potential as an objective, valid, and clinically useful tool for profiling articulatory deficits in individuals with speech motor disorders. The findings also suggest that compared to clinician ratings, instrumental measures are more sensitive to subtle differences in articulatory function. With further research, this framework could provide more accurate and reliable characterizations of articulatory impairment, which may eventually increase clinical confidence in the diagnosis and treatment of patients with different articulatory phenotypes.


Subject(s)
Speech Intelligibility , Speech , Acoustics , Biomechanical Phenomena , Humans , Speech Acoustics , Speech Production Measurement
14.
J Speech Lang Hear Res ; 64(12): 4718-4735, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34762814

ABSTRACT

PURPOSE: The main purpose of this study was to create an empirical classification system for speech severity in patients with dysarthria secondary to amyotrophic lateral sclerosis (ALS) by exploring the reliability and validity of speech-language pathologists' (SLPs') ratings of dysarthric speech. METHOD: Ten SLPs listened to speech samples from 52 speakers with ALS and 20 healthy control speakers. SLPs were asked to rate the speech severity of the speakers using five response options: normal, mild, moderate, severe, and profound. Four severity-surrogate measures were also calculated: SLPs transcribed the speech samples for the calculation of speech intelligibility and rated the effort it took to understand the speakers on a visual analog scale. In addition, speaking rate and intelligible speaking rate were calculated for each speaker. Intrarater and interrater reliability were calculated for each measure. We explored the validity of clinician-based severity ratings by comparing them to the severity-surrogate measures. Receiver operating characteristic (ROC) curves were conducted to create optimal cutoff points for defining dysarthria severity categories. RESULTS: Intrarater and interrater reliability for the clinician-based severity ratings were excellent and were comparable to reliability for the severity-surrogate measures explored. Clinician severity ratings were strongly associated with all severity-surrogate measures, suggesting strong construct validity. We also provided a range of values for each severity-surrogate measure within each severity category based on the cutoff points obtained from the ROC analyses. CONCLUSIONS: Clinician severity ratings of dysarthric speech are reliable and valid. We discuss the underlying challenges that arise when selecting a stratification measure and offer recommendations for a classification scheme when stratifying patients and research participants into speech severity categories.


Subject(s)
Dysarthria , Speech Perception , Dysarthria/diagnosis , Dysarthria/etiology , Humans , Reproducibility of Results , Speech Intelligibility , Speech Production Measurement
15.
Front Immunol ; 12: 635018, 2021.
Article in English | MEDLINE | ID: mdl-33936047

ABSTRACT

Objective: Bacterial and viral infectious triggers are linked to spondyloarthritis (SpA) including psoriatic arthritis (PsA) development, likely via dendritic cell activation. We investigated spinal entheseal plasmacytoid dendritic cells (pDCs) toll-like receptor (TLR)-7 and 9 activation and therapeutic modulation, including JAK inhibition. We also investigated if COVID-19 infection, a potent TLR-7 stimulator triggered PsA flares. Methods: Normal entheseal pDCs were characterized and stimulated with imiquimod and CpG oligodeoxynucleotides (ODN) to evaluate TNF and IFNα production. NanoString gene expression assay of total pDCs RNA was performed pre- and post- ODN stimulation. Pharmacological inhibition of induced IFNα protein was performed with Tofacitinib and PDE4 inhibition. The impact of SARS-CoV2 viral infection on PsA flares was evaluated. Results: CD45+HLA-DR+CD123+CD303+CD11c- entheseal pDCs were more numerous than blood pDCs (1.9 ± 0.8% vs 0.2 ± 0.07% of CD45+ cells, p=0.008) and showed inducible IFNα and TNF protein following ODN/imiquimod stimulation and were the sole entheseal IFNα producers. NanoString data identified 11 significantly upregulated differentially expressed genes (DEGs) including TNF in stimulated pDCs. Canonical pathway analysis revealed activation of dendritic cell maturation, NF-κB signaling, toll-like receptor signaling and JAK/STAT signaling pathways following ODN stimulation. Both tofacitinib and PDE4i strongly attenuated ODN induced IFNα. DAPSA scores elevations occurred in 18 PsA cases with SARS-CoV2 infection (9.7 ± 4 pre-infection and 35.3 ± 7.5 during infection). Conclusion: Entheseal pDCs link microbes to TNF/IFNα production. SARS-CoV-2 infection is associated with PsA Flares and JAK inhibition suppressed activated entheseal plasmacytoid dendritic Type-1 interferon responses as pointers towards a novel mechanism of PsA and SpA-related arthropathy.


Subject(s)
Arthritis, Psoriatic/complications , COVID-19/complications , Dendritic Cells/metabolism , Interferon-alpha/metabolism , Janus Kinases/antagonists & inhibitors , Adjuvants, Immunologic/pharmacology , Adult , Aged , COVID-19/genetics , COVID-19/metabolism , Computational Biology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dendritic Cells/drug effects , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Imiquimod/pharmacology , Janus Kinases/metabolism , Male , Middle Aged , NF-kappa B/metabolism , Oligonucleotides/pharmacology , Phosphodiesterase 4 Inhibitors/pharmacology , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/metabolism , Transcriptome , Tumor Necrosis Factor-alpha/metabolism
16.
mBio ; 12(3)2021 05 18.
Article in English | MEDLINE | ID: mdl-34006664

ABSTRACT

Pathogen transmission is a key point not only for infection control and public health interventions but also for understanding the selective pressures in pathogen evolution. The "success" of a pathogen lies not in its ability to cause signs and symptoms of illness but in its ability to be shed from the initial hosts, survive between hosts, and then establish infection in a new host. Recent insights have shown the importance of the interaction between the pathogen and both the commensal microbiome and coinfecting pathogens on shedding, environmental survival, and acquisition of infection. Pathogens have evolved in the context of cooperation and competition with other microbes, and the roles of these cooperations and competitions in transmission can inform novel preventative and therapeutic strategies.IMPORTANCE Transmission of pathogens from one host to another is an essential event in pathogenesis. Transmission is driven by factors intrinsic to the host and to the pathogen. In addition, transmission is altered by interactions of the pathogen with the commensal microbiota of the host and coinfecting pathogens. Recent insights into these interactions have shown both enhanced and reduced transmission efficiencies depending on the makeup of the polymicrobial community. This review will discuss polymicrobial interactions during shedding from the initial host, time in the environment, and acquisition by the new host.


Subject(s)
Bacteria/pathogenicity , Bacterial Infections/transmission , Coinfection/microbiology , Host-Pathogen Interactions , Microbial Interactions , Animals , Bacterial Infections/microbiology , Humans , Microbiota
17.
Infect Immun ; 89(8): e0071320, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34031124

ABSTRACT

Streptococcus pneumoniae is an opportunistic pathogen that is a common cause of serious invasive diseases such as pneumonia, bacteremia, meningitis, and otitis media. Transmission of this bacterium has classically been thought to occur through inhalation of respiratory droplets and direct contact with nasal secretions. However, the demonstration that S. pneumoniae is desiccation tolerant and, therefore, environmentally stable for extended periods of time opens up the possibility that this pathogen is also transmitted via contaminated surfaces (fomites). To better understand the molecular mechanisms that enable S. pneumoniae to survive periods of desiccation, we performed a high-throughput transposon sequencing (Tn-seq) screen in search of genetic determinants of desiccation tolerance. We identified 42 genes whose disruption reduced desiccation tolerance and 45 genes that enhanced desiccation tolerance. The nucleotide excision repair pathway was the most enriched category in our Tn-seq results, and we found that additional DNA repair pathways are required for desiccation tolerance, demonstrating the importance of maintaining genome integrity after desiccation. Deletion of the nucleotide excision repair gene uvrA resulted in a delay in transmission between infant mice, indicating a correlation between desiccation tolerance and pneumococcal transmssion. Understanding the molecular mechanisms that enable pneumococcal persistence in the environment may enable targeting of these pathways to prevent fomite transmission, thereby preventing the establishment of new colonization and any resulting invasive disease.


Subject(s)
DNA Repair , DNA Transposable Elements , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/genetics , Adaptation, Biological , Animals , Disease Susceptibility , Host-Pathogen Interactions , Mice , Pneumococcal Infections/immunology , Pneumococcal Infections/transmission , Signal Transduction , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/pathogenicity
18.
Semin Immunopathol ; 43(2): 193-206, 2021 04.
Article in English | MEDLINE | ID: mdl-33544244

ABSTRACT

A curious feature of axial disease in ankylosing spondylitis (AS) and related non-radiographic axial spondyloarthropathy (nrAxSpA) is that spinal inflammation may ultimately be associated with excessive entheseal tissue repair with new bone formation. Other SpA associated target tissues including the gut and the skin have well established paradigms on how local tissue immune responses and proven disease relevant cytokines including TNF and the IL-23/17 axis contribute to tissue repair. Normal skeletal homeostasis including the highly mechanically stressed entheseal sites is subject to tissue microdamage, micro-inflammation and ultimately repair. Like the skin and gut, healthy enthesis has resident immune cells including ILCs, γδ T cells, conventional CD4+ and CD8+ T cells and myeloid lineage cells capable of cytokine induction involving prostaglandins, growth factors and cytokines including TNF and IL-17 that regulate these responses. We discuss how human genetic studies, animal models and translational human immunology around TNF and IL-17 suggest a largely redundant role for these pathways in physiological tissue repair and homeostasis. However, disease associated immune system overactivity of these cytokines with loss of tissue repair "fine tuning" is eventually associated with exuberant tissue repair responses in AS. Conversely, excessive biomechanical stress at spinal enthesis or peripheral enthesis with mechanically related or degenerative conditions is associated with a normal immune system attempts at cytokine fine tuning, but in this setting, it is commensurate to sustained abnormal biomechanical stressing. Unlike SpA, where restoration of aberrant and excessive cytokine "fine tuning" is efficacious, antagonism of these pathways in biomechanically related disease may be of limited or even no value.


Subject(s)
Interleukin-17 , Spondylarthritis , Animals , Cytokines , Homeostasis , Humans , Inflammation , Spondylarthritis/etiology , Spondylarthritis/therapy
19.
Cells ; 10(2)2021 02 06.
Article in English | MEDLINE | ID: mdl-33562025

ABSTRACT

OBJECTIVE: The spondylarthritides (SpA) are intimately linked to new bone formation and IL-17A and TNF pathways. We investigated spinal soft tissue and bone mesenchymal stem cell (MSC) responses to IL-17A and TNF, including their osteogenesis, adipogenesis, and stromal supportive function and ability to support lymphocyte recruitment. METHODS: Normal spinal peri-entheseal bone (PEB) and entheseal soft tissue (EST) were characterized for MSCs by immunophenotypic, osteogenic, chondrogenic, and adipogenic differentiation criteria. Functional and gene transcriptomic analysis was carried out on undifferentiated, adipo- differentiated, and osteo-differentiated MSCs. The enthesis C-C Motif Chemokine Ligand 20-C-C Motif Chemokine Receptor 6 (CCL20-CCR6) axis was investigated at transcript and protein levels to ascertain whether entheseal MSCs influence local immune cell populations. RESULTS: Cultured MSCs from both PEB and EST displayed a tri-lineage differentiation ability. EST MSCs exhibited 4.9-fold greater adipogenesis (p < 0.001) and a 3-fold lower osteogenic capacity (p < 0.05). IL-17A induced greater osteogenesis in PEB MSCs compared to EST MSCs. IL-17A suppressed adipogenic differentiation, with a significant decrease in fatty acid-binding protein 4 (FABP4), peroxisome proliferator-activated receptor gamma (PPARγ), Cell Death Inducing DFFA Like Effector C (CIDEC), and Perilipin-1 (PLIN1). IL-17A significantly increased the CCL20 transcript (p < 0.01) and protein expression (p < 0.001) in MSCs supporting a role in type 17 lymphocyte recruitment. CONCLUSIONS: Normal spinal enthesis harbors resident MSCs with different in vitro functionalities in bone and soft tissue, especially in response to IL-17A, which enhanced osteogenesis and CCL20 production and reduced adipogenesis compared to unstimulated MSCs. This MSC-stromal-enthesis immune system may be a hitherto unappreciated mechanism of "fine tuning" tissue repair responses at the enthesis in health and could be relevant for SpA understanding.


Subject(s)
Adipogenesis , Interleukin-17/pharmacology , Mesenchymal Stem Cells/cytology , Osteogenesis , Spinal Cord/cytology , Stromal Cells/cytology , Tumor Necrosis Factor-alpha/pharmacology , Adipogenesis/drug effects , Adipogenesis/genetics , Aged , Bone and Bones/cytology , Chemokine CCL20/metabolism , Cytokines/metabolism , Female , Humans , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, CCR6/metabolism , Stromal Cells/drug effects
20.
J Infect Dis ; 223(12 Suppl 2): S201-S208, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33330907

ABSTRACT

The bacterial, fungal, and helminthic species that comprise the microbiome of the mammalian host have profound effects on health and disease. Pathogenic viruses must contend with the microbiome during infection and likely have evolved to exploit or evade the microbiome. Both direct interactions between the virions and the microbiota and immunomodulation and tissue remodeling caused by the microbiome alter viral pathogenesis in either host- or virus-beneficial ways. Recent insights from in vitro and murine models of viral pathogenesis have highlighted synergistic and antagonistic, direct and indirect interactions between the microbiome and pathogenic viruses. This review will focus on the transkingdom interactions between human gastrointestinal and respiratory viruses and the constituent microbiome of those tissues.


Subject(s)
Microbiota/physiology , Viruses/pathogenicity , Animals , Bacterial Physiological Phenomena , Bacteriophages/physiology , Fungi/physiology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/parasitology , Gastrointestinal Tract/virology , Helminths/physiology , Humans , Lung/immunology , Lung/microbiology , Lung/parasitology , Lung/virology , Viruses/classification
SELECTION OF CITATIONS
SEARCH DETAIL