Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Environ Toxicol Pharmacol ; 93: 103883, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35550874

ABSTRACT

The global use of bisphenol S (BPS) has now been significantly increased for commensurate utilization as a substitute for BPA for its regulatory concerns. Though, previous reports indicated that BPS been also appeared as a toxic congener comparable to BPA. In the present study, we determined nephrotoxicity condition induced due to BPS exposure. Results indicated that BPS significantly promoted histopathological disturbance in the kidney, and altered the levels of biomarkers of kidney damage in serum and urine samples of Wistar rats. It is also indicated that BPS altered the expression of kidney damage biomarkers associated with glomerular and tubular injury. Additionally, we determined the perturbation of kidney metabolites in the underlying pathophysiological response of kidney injury due to BPS exposure. Gas chromatography-mass spectrometry based untargeted metabolomics exhibited 20 significantly perturbed metabolites. Moreover, metabolic pathway analysis revealed significant disturbance in the TCA cycle and pyruvate metabolism pathways.


Subject(s)
Kidney Diseases , Metabolomics , Animals , Benzhydryl Compounds/toxicity , Biomarkers/urine , Gas Chromatography-Mass Spectrometry , Kidney/pathology , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Metabolomics/methods , Phenols , Rats , Rats, Wistar , Sulfones
2.
Front Med (Lausanne) ; 9: 1045692, 2022.
Article in English | MEDLINE | ID: mdl-36714129

ABSTRACT

Arsenic (As) exposure is progressively associated with chronic kidney disease (CKD), a leading public health concern present worldwide. The adverse effect of As exposure on the kidneys of people living in As endemic areas have not been extensively studied. Furthermore, the impact of only prenatal exposure to As on the progression of CKD also has not been fully characterized. In the present study, we examined the effect of prenatal exposure to low doses of As 0.04 and 0.4 mg/kg body weight (0.04 and 0.4 ppm, respectively) on the progression of CKD in male offspring using a Wistar rat model. Interestingly, only prenatal As exposure was sufficient to elevate the expression of profibrotic (TGF-ß1) and proinflammatory (IL-1α, MIP-2α, RANTES, and TNF-α) cytokines at 2-day, 12- and 38-week time points in the exposed progeny. Further, alteration in adipogenic factors (ghrelin, leptin, and glucagon) was also observed in 12- and 38-week old male offspring prenatally exposed to As. An altered level of these factors coincides with impaired glucose metabolism and homeostasis accompanied by progressive kidney damage. We observed a significant increase in the deposition of extracellular matrix components and glomerular and tubular damage in the kidneys of 38-week-old male offspring prenatally exposed to As. Furthermore, the overexpression of TGF-ß1 in kidneys corresponds with hypermethylation of the TGF-ß1 gene-body, indicating a possible involvement of prenatal As exposure-driven epigenetic modulations of TGF-ß1 expression. Our study provides evidence that prenatal As exposure to males can adversely affect the immunometabolism of offspring which can promote kidney damage later in life.

3.
Nanotoxicology ; 15(5): 636-660, 2021 06.
Article in English | MEDLINE | ID: mdl-33876704

ABSTRACT

Silver nanoparticles (AgNPs) are extensively utilized in food, cosmetics, and healthcare products. Though the effects of AgNPs exposure on adults are well documented, the long-term effects of gestational/perinatal exposure upon the health of offspring have not been addressed. Herein, we show that only perinatal exposure to AgNPs through the mother could lead to chronic inflammation in offspring which persists till adulthood. Further, AgNPs exposure altered offspring's immune responses against environmental stresses. AgNPs exposed offspring showed an altered response in splenocyte proliferation assay when challenged to lipopolysaccharide, concanavalin-A, AgNPs, or silver ions. Perinatal AgNPs exposure affected metabolic parameters (resistin, glucagon-like peptide-1, leptin, insulin) and upregulated JNK/P38/ERK signaling in the pancreas. We observed pancreatic damage, reduced insulin level, and increased blood glucose levels. Further, we observed renal damage, particularly to tubular and glomerular regions as indicated by histopathology and electron microscopy. Our study thus shows that only perinatal exposure to AgNPs could induce persistent inflammation, alter immune responses against foreign antigens and metabolism which may contribute to pancreatic and renal damage later in life.


Subject(s)
Kidney , Metal Nanoparticles , Silver , Animals , Cell Death , Female , Kidney/drug effects , MAP Kinase Signaling System , Metal Nanoparticles/toxicity , Mice , Pregnancy , Silver/toxicity
4.
Toxicol Appl Pharmacol ; 420: 115516, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33798594

ABSTRACT

Nabumetone (NB) is a non-steroidal anti-inflammatory drug (NSAID), prescribed for managing pain associated with acute/chronic rheumatoid arthritis, osteoarthritis and other musculoskeletal disorders. Though some incidences of photosensitivity have been reported, there is limited information available on its phototoxicity potential. In this study, NB photodegraded in a time-dependant manner (0-4 h) under UVA (1.5 mW/cm2), UVB (0.6 mW/cm2) and natural sunlight as observed through UV-vis spectrophotometer and the results were further confirmed with Ultra High-Performance Liquid Chromatography (UHPLC). Photosensitized NB generated reactive oxygen species (ROS) as observed by lipid peroxidation, suggesting oxidative degradation of lipids in cell membrane, thereby resulting in cell damage. MTT and NRU (neutral red uptake) assays revealed that NB induced phototoxicity in concentration-dependent manner (0.5, 1, 5, 10 µg/ml) under UVA, UVB and sunlight exposure (30 min) in human keratinocytes cell line (HaCaT), with significant phototoxicity at the concentration of 5 µg/ml. Photosensitized NB generated intracellular ROS, disrupted mitochondrial and lysosomal membrane integrity, resulting in cell death. UV-induced genotoxicity by NB was confirmed through micronuclei generation, γ-H2AX induction and cyclobutane pyrimidine dimer formation. This is the first study which showed the phototoxicity and photogenotoxicity potential of NB in HaCaT cell line. We also observed that photosensitized NB upregulated inflammatory markers, such as COX-2 and TNFα. This study proposes that sunlight exposure should be avoided by patients using nabumetone and proper guidance should be provided by clinicians regarding photosensitivity of drugs for better safety and efficacy.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/toxicity , DNA Damage , Keratinocytes/drug effects , Micronuclei, Chromosome-Defective/chemically induced , Nabumetone/toxicity , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Ultraviolet Rays , Anti-Inflammatory Agents, Non-Steroidal/radiation effects , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Drug Stability , HaCaT Cells , Histones/metabolism , Humans , Keratinocytes/metabolism , Keratinocytes/ultrastructure , Nabumetone/radiation effects , Photolysis , Time Factors , Tumor Necrosis Factor-alpha/metabolism
5.
Environ Toxicol Pharmacol ; 77: 103372, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32203925

ABSTRACT

Previous studies highlighted bisphenol S (BPS), an industrial chemical responsible for harmful effects comparable to its congener substance bisphenol A (BPA). Accounted for various adversities to biological functions, it could alter the expression of endogenous metabolites in many metabolic processes. The study was aimed to investigate the altered metabolites in hyperglycemic condition triggered by sub-chronic exposure of BPS in serum and urine samples of Wistar rats. Invaded effects of hyperglycemia due to BPS exposure on Wistar rats were investigated by oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). Metabolomic profiling of serum and urinary metabolites was done by gas chromatography-mass spectrometry (GC-MS) analysis. The metabolomics data were represented by one way ANOVA, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) along with the mapping of perturbed metabolic pathways. The OGTT and ITT showed increased levels of glucose in treated animals with median and high doses, indicating the manifestation of hyperglycemia. The metabolomic profiling of serum and urine revealed BPS could cause consequential metabolomic perturbation mainly of amino acids, sugars, and organic acids. Furthermore, the extrapolation of Kyoto Encyclopedia of Genes and Genomes (KEGG) based systematic analysis helped to monitor the altered pathways, including amino acids, glycolysis, pyruvate metabolism, etc., which were provoked due to BPS exposure. The overview of the perturbed metabolite profiling in rats promisingly showed early diagnostic markers of hyperglycemic condition triggered due to the BPS exposure. Findings from this study will be helpful towards the exploration of mechanistic insights of several disturbed pathways.


Subject(s)
Hyperglycemia/chemically induced , Phenols/toxicity , Sulfones/toxicity , Animals , Glucose Tolerance Test , Glycolysis/drug effects , Hyperglycemia/blood , Hyperglycemia/metabolism , Hyperglycemia/urine , Male , Metabolic Networks and Pathways/drug effects , Metabolomics , Phenols/blood , Phenols/pharmacokinetics , Phenols/urine , Rats, Wistar , Sulfones/blood , Sulfones/pharmacokinetics , Sulfones/urine
6.
Nanomaterials (Basel) ; 10(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878144

ABSTRACT

Metal gold nanoparticles are of great interest due to their unique physico-chemical properties and their potential to be used as nano-probes in biosensors, drug delivery, and therapeutic applications. Currently, many capping agents are used for metal gold nanoparticles, such as cetyltrimethylammonium bromide (CTAB) and tri-sodium citrate that have been reported to be toxic and hinders biological applications. To address this issue, we report, for the first time, the use of taurine as a stable non-cytotoxic capping agent for synthesizing gold nanoparticles by using an in situ wet-chemical method. This facile method resulted in monodisperse gold nanospheres with a high yield and stability. Monodisperse gold nanospheres with average diameters of 6.9 nm and 46 nm were synthesized at a high yield with controlled morphology. Temperature played a critical role in determining the size of the taurine-capped gold nanoparticles. The subtle changes in the reaction parameters had a tremendous effect on the final size of nanoparticles and their stability. The synthesized nanoparticles were characterized by using optical spectroscopy, a ZetaSizer, a NanoSight, Fourier Transform Infrared (FTIR) spectroscopy, X-ray Diffraction (XRD), X-ray Photon Spectroscopy (XPS) and Electron Microscopy to understand their physico-chemical properties. Taurine was explored as a capping and stabilizing agent for gold nanospheres, which were evaluated for their toxicity responses towards human liver carcinoma cells (HepG2) via MTT assay.

7.
Ecotoxicol Environ Saf ; 176: 108-118, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-30925326

ABSTRACT

Rhizospheric and plant root associated microbes generally play a protective role against arsenic toxicity in rhizosphere. Rhizospheric microbial interaction influences arsenic (As) detoxification/mobilization into crop plants and its level of toxicity and burden. In the present investigation, we have reported a rhizospheric fungi Aspergillus flavus from an As contaminated rice field, which has capability to grow at high As concentration and convert soluble As into As particles. These As particles showed a reduced toxicity to soil dwelling bacteria, fungi, plant and slime mold. It does not disrupt membrane potential, inner/outer membrane integrity and survival of the free N2 fixating bacteria. In arbuscular mycorrhiza like endophytic fungi Piriformospora indica, these As particles does not influence mycelial growth and plant beneficial parameters such as phosphate solubilizing enzyme rAPase secretion and plant root colonization. Similarly, it does not affect plant growth and chlorophyll content negatively in rice plant. However, these As particles showed a poor absorption and mobilization in plant. These As particle also does not affect attachment process and survival of amoeboid cells in slime mold, Dictyostelium discoideum. This study suggests that the process of conversion of physical and chemical properties of arsenic during transformation, decides the toxicity of arsenic particles in the rhizospheric environment. This phenomenon is of environmental significance, not only in reducing arsenic toxicity but also in the survival of healthy living organism in arsenic-contaminated rhizospheric environment.


Subject(s)
Arsenic/metabolism , Arsenic/toxicity , Microbiota/drug effects , Mycorrhizae/metabolism , Oryza/metabolism , Soil Microbiology , Aspergillus flavus/metabolism , Biotransformation , Oryza/growth & development , Oryza/microbiology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Rhizosphere , Soil/chemistry , Soil Pollutants/metabolism , Soil Pollutants/toxicity
8.
Toxicol Sci ; 162(2): 406-428, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29228391

ABSTRACT

We earlier reported that exposure to arsenic at concentrations in ground water of India attenuated glial fibrillary acidic protein (GFAP) during brain development. Here, we validated the effects and explored mechanism in cultured astrocytes and developing rat brain. We hypothesized participation of epidermal growth factor receptor (EGFR), known to regulate GFAP. We found that arsenic inactivated EGFR, marked by reduced phospho-EGFR in astrocytes. Screening EGFR ligands revealed an arsenic-mediated attenuation in cellular and secreted-Heparin-binding EGF-like growth factor (HB-EGF). Furthermore, we observed that recombinant-HB-EGF cotreatment with arsenic blocked reduction in HB-EGF, secreted-HB-EGF and phospho-EGFR, which could be reversed by EGFR-inhibitor, gefitinib, suggesting that arsenic attenuated an HB-EGF/EGFR loop in astrocytes. This reduced HB-EGF/EGFR was essentially responsible for arsenic-induced astrocyte damage, obvious from a recombinant-HB-EGF-mediated recovery in GFAP levels and astrocyte morphology and reduction in astrocyte apoptosis, and the reverse by gefitinib. We found that arsenic also suppressed neuronal HB-EGF levels, which additionally contributed towards astrocyte damage. Exploring the pathways downstream of reduced HB-EGFR/EGFR revealed that an upregulated matrix metalloproteinase 9 (MMP9) within the astrocytes ultimately led to apoptosis and GFAP loss. Astrocytes and MMPs are known to regulate the blood-brain barrier (BBB) integrity, and hence we examined the effects of arsenic on BBB. We detected an arsenic-mediated increased BBB permeability, which could be blocked by recombinant-HB-EGF and MMP9 inhibitor, SB-3CT. Thus, our study indicates that via reduced astrocyte and neuronal HB-EGF signaling, arsenic may induce MMP9 levels and GFAP loss in astrocytes, which might adversely affect BBB integrity of the developing rat brain.


Subject(s)
Arsenites/toxicity , Astrocytes/drug effects , Brain/drug effects , ErbB Receptors/metabolism , Heparin-binding EGF-like Growth Factor/metabolism , Matrix Metalloproteinase 9/metabolism , Sodium Compounds/toxicity , Water Pollutants, Chemical/toxicity , Animals , Animals, Newborn , Apoptosis/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Brain/embryology , Brain/metabolism , Female , Maternal Exposure , Organogenesis/drug effects , Pregnancy , Primary Cell Culture , Rats, Wistar , Signal Transduction
9.
J Chromatogr A ; 1528: 10-17, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29096924

ABSTRACT

In the present study, a method has been efficiently developed for the first time to determine nine bisphenol analogues [bisphenol A (BPA), bisphenol C (BPC), bisphenol AF (BPAF), bisphenol E (BPE), bisphenol F (BPF), bisphenol G (BPG), bisphenol M (BPM), bisphenol S (BPS), and bisphenol Z (BPZ)] together in bottled carbonated beverages (collected from the local market of Lucknow, India) using dispersive liquid-liquid microextraction process. This is based on solidification of floating organic droplet (DLLME-SFO) followed by injector port silylation coupled with gas chromatography-tandem mass spectrometry. The process investigated parameters of DLLME-SFO (including the type of extraction and disperser solvents with their volumes, effect of pH, ionic strength, and the sample volume), factors influencing to injection port derivatization like, collision energy, injector port temperature, derivatizing reagent with sample injection volume, and type of organic solvent. BPA, BPF, BPZ, and BPS were detected in each sample; whereas, other bisphenols were also detected in some carbonated beverage samples. After optimizing the required conditions, good linearity of analytes was achieved in the range of 0.097-100ngmL-1 with coefficients of determination (R2)≥0.995. Intra-day and inter day precision of the method was good, with relative standard deviation (% RSD)≤10.95%. The limits of detection (LOD) and limits of quantification (LOQ) values of all bisphenols were ranged from 0.021 to 0.104ngmL-1 and 0.070 to 0.343ngmL-1, respectively. The recovery of extraction was good (73.15-95.08%) in carbonated beverage samples and good enrichment factors (96.36-117.33) were found. Thus, the developed method of microextraction was highly precise, fast, and reproducible to determine the level of contaminants in bottled carbonated beverages.


Subject(s)
Carbonated Beverages/analysis , Chromatography, Gas , Food Analysis/methods , Liquid Phase Microextraction/instrumentation , Phenols/analysis , Tandem Mass Spectrometry , Benzhydryl Compounds/analysis , Cyclohexanes/analysis , Limit of Detection , Solvents/chemistry , Sulfones/analysis
10.
Apoptosis ; 22(10): 1273-1286, 2017 10.
Article in English | MEDLINE | ID: mdl-28756530

ABSTRACT

Platinum containing drugs are widely used to treat advanced lung carcinomas. However, their clinical success is still limited due to severe side effects, and drug resistance. Alternative approaches are warranted to augment efficacy of platinum based chemotherapeutic drugs with minimal side effects. Intricatinol (INT), a homoisoflavonoid, has been shown to possess anti-tubercular, antioxidant, hypoglycaemic, and hypolipidemic activity. However, its anticancer activity largely remains unknown. In the present study, we have evaluated anticancer potential of INT alone or in combination with cisplatin (CIS) in non-small cell lung carcinoma (A549) cells. Treatment with INT alone reduced the viability of A549 cells in a dose-dependent manner. Interestingly, the combination of low doses of INT and CIS exerted a synergistic effect and induced apoptosis as evident by DNA fragmentation and Annexin V positive cells. Enhanced Bax:Bcl-2 ratio, loss of Δψm, cytochrome c release, cleavage of caspase 3 and PARP1 strongly corroborated our findings. Further, increased expression of p53, p38 MAPK and their phosphorylated counterparts, loss of clonogenicity and reduced migration potential were also recorded with INT + CIS treatment. Most interestingly, INT could not induce any significant cell death in primary mouse embryonic fibroblasts (MEFs). Moreover, no additive or synergistic effect was noted with INT + CIS in MEFs under similar treatment conditions. In conclusion, INT has a selective anticancer potential and could synergize cytotoxicity of CIS. Therefore, the combination of INT and CIS may serve as an effective anticancer strategy for the treatment of non-small cell lung carcinoma.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cisplatin/pharmacology , Isoflavones/pharmacology , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , A549 Cells , Animals , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Fibroblasts/cytology , Humans , Isoflavones/chemistry , Mice , Pluripotent Stem Cells/cytology
11.
Nanotoxicology ; 11(5): 671-686, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28617070

ABSTRACT

Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials. Following oral exposure, AgNPs can accumulate in various organs including kidneys where they show gender specific accumulation. There is limited information on their effect on renal system following long-term animal exposure especially at the ultramicroscopic and molecular level. In this study, we have assessed the effect of 60 days oral AgNPs treatment on kidneys of female Wistar rats at doses of 50 ppm and 200 ppm that are below previously reported lowest observed adverse effect level (LOAEL). AgNPs treatment led to decrease in kidney weight and some loss of renal function as seen by increased levels of serum creatinine and early toxicity markers such as KIM-1, clusterin and osteopontin. We also observed significant mitochondrial damage, loss of brush border membranes, pronounced swelling of podocytes and degeneration of their foot processes using transmission electron microscopy (TEM). These symptoms are similar to those seen in nephrotic syndrome and 'Minimal change disease' of kidney where few changes are visible under light microscopy but significant ultrastructural damage is observed. Prolonged treatment of AgNPs also led to the activation of cell proliferative, survival and proinflammatory factors (Akt/mTOR, JNK/Stat and Erk/NF-κB pathways and IL1ß, MIP2, IFN-γ, TNF-α and RANTES) and dysfunction of normal apoptotic pathway. Our study shows how long term AgNPs exposure may promote ultrastructural damage to kidney causing inflammation and expression of cell survival factors. These changes, in the long term, could lead to inhibition of the beneficial apoptotic pathway and promotion of necrotic cell death in kidneys.


Subject(s)
Apoptosis/drug effects , Kidney , Metal Nanoparticles , Necrosis/chemically induced , Silver , Administration, Oral , Animals , Female , Kidney/cytology , Kidney/drug effects , Kidney/pathology , Kidney/physiopathology , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/toxicity , Rats , Rats, Wistar , Silver/administration & dosage , Silver/toxicity , Toxicity Tests, Subchronic
12.
Toxicology ; 386: 28-39, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28526320

ABSTRACT

Mercury is one of the major heavy metal pollutants occurring in elemental, inorganic and organic forms. Due to ban on most inorganic mercury containing products, human exposure to mercury generally occurs as methylmercury (MeHg) by consumption of contaminated fish and other sea food. Animal and epidemiological studies indicate that MeHg affects neural and renal function. Our study is focused on nephrotoxic potential of MeHg. In this study, we have shown for the first time how MeHg could epigenetically modulate matrix metalloproteinase 9(MMP9) to promote nephrotoxicity using an animal model of sub chronic MeHg exposure. MeHg caused renal toxicity as was seen by increased levels of serum creatinine and expression of early nephrotoxicity markers (KIM-1, Clusterin, IP-10, and TIMP). MeHg exposure also correlated strongly with induction of MMP9 mRNA and protein in a dose dependent manner. Further, while induction of MMP9 promoted cytoskeleton disruption and loss of cell-cell adhesion (loss of F-actin, Vimentin and Fibronectin), inhibition of MMP9 was found to reduce these disruptions. Mechanistic studies by ChIP analysis showed that MeHg modulated MMP9 by promoting demethylation of its regulatory region to increase its expression. Bisulfite sequencing identified critical CpGs in the first exon of MMP9 which were demethylated following MeHg exposure. ChIP studies also showed loss of methyl binding protein, MeCP2 and transcription factor PEA3 at the demethylated site confirming decreased CpG methylation. Our studies thus show how MeHg could epigenetically modulate MMP9 to promote cytoskeleton disruption leading to loss of renal function.


Subject(s)
Cytoskeleton/drug effects , Epigenesis, Genetic , Kidney Diseases/chemically induced , Matrix Metalloproteinase 9/genetics , Methylmercury Compounds/toxicity , Animals , Creatinine/blood , Cytoskeleton/pathology , Dose-Response Relationship, Drug , Environmental Pollutants/administration & dosage , Environmental Pollutants/toxicity , Female , Kidney Diseases/physiopathology , Kidney Function Tests , Methylmercury Compounds/administration & dosage , RNA, Messenger/metabolism , Rats , Rats, Wistar
13.
Food Chem ; 199: 870-5, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26776046

ABSTRACT

In the present communication, a non-covalent fenarimol-imprinted polymer was synthesized by precipitation polymerization technique using methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, and azobisisobutyronitrile (AIBN) as an initiator in different porogenic solvent. Binding study of molecularly imprinted and non-imprinted polymer (MIP and NIP) showed that MIP possesses a higher affinity towards this analyte compared to NIP. The binding affinity of MIP was calculated by static and kinetic adsorption study. Further, a MIP based cartridge was designed to use in extraction process, necessary for specific determination and quantification of the fungicide in food matrices. Under the optimum conditions, developed method was found to be linear (R(2)=0.9999-0.9994). Limit of detection (LOD) and limit of quantitation (LOQ) in samples were 0.03-0.06 and 0.12-0.21 µg mL(-1), respectively. The rate of recovery of fenarimol was 91.16-99.52% on MIPs. The validated method of molecularly imprinted solid-phase extraction (MISPE) cartridge was successfully applied to the food matrices and compared with commercial sorbent (RP18 and Oasis HLB). However we feel, this method has promising applications in the routine analysis of food samples in industry.


Subject(s)
Molecular Imprinting/methods , Pyrimidines/chemistry , Solid Phase Extraction/methods , Food Quality , Polymers
14.
Nat Prod Commun ; 4(8): 1089-92, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19768989

ABSTRACT

In the continuing search for newer pancreatic lipase inhibitors from plants, a total of 63 extracts from 21 different plants were screened to study their pancreatic lipase (PL) inhibitory activity in vitro. All three extracts (DCM, EtOAc and MeOH) of Murraya koenigii (L.) Spreng leaves (Rutaceae) exhibited antilipase activity greater than 80%. Further, bioactivity guided fractionation of the EtOAc extract led to the isolation of four alkaloids, namely mahanimbin, koenimbin, koenigicine and clausazoline-K, with IC50 values of 17.9 microM, 168.6 microM, 428.6 microM and <500 microM, respectively. This study reports for the first time the PL inhibitory potential of carbazole alkaloids from plants.


Subject(s)
Alkaloids/isolation & purification , Lipase/antagonists & inhibitors , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Rutaceae/chemistry , Alkaloids/pharmacology , Animals , Carbazoles/isolation & purification , Carbazoles/pharmacology , Humans , Plant Extracts/pharmacology , Plant Roots/chemistry , Seeds/chemistry , Swine
SELECTION OF CITATIONS
SEARCH DETAIL