Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
3.
Radiol Imaging Cancer ; 5(5): e220166, 2023 09.
Article En | MEDLINE | ID: mdl-37656041

Purpose To investigate Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1) approximations of target lesion tumor burden by comparing categorical treatment response according to conventional RECIST versus actual tumor volume measurements of RECIST target lesions. Materials and Methods This is a retrospective cohort study of individuals with metastatic renal cell carcinoma enrolled in a clinical trial (from 2003 to 2017) and includes individuals who underwent baseline and at least one follow-up chest, abdominal, and pelvic CT study and with at least one target lesion. Target lesion volume was assessed by (a) Vmodel, a spherical model of conventional RECIST 1.1, which was extrapolated from RECIST diameter, and (b) Vactual, manually contoured volume. Volumetric responses were determined by the sum of target lesion volumes (Vmodel-sum TL and Vactual-sum TL, respectively). Categorical volumetric thresholds were extrapolated from RECIST. McNemar tests were used to compare categorical volume responses. Results Target lesions were assessed at baseline (638 participants), week 9 (593 participants), and week 17 (508 participants). Vmodel-sum TL classified more participants as having progressive disease (PD), compared with Vactual-sum TL at week 9 (52 vs 31 participants) and week 17 (57 vs 39 participants), with significant overall response discordance (P < .001). At week 9, 25 (48%) of 52 participants labeled with PD by Vmodel-sum TL were classified as having stable disease by Vactual-sum TL. Conclusion A model of RECIST 1.1 based on a single diameter measurement more frequently classified PD compared with response assessment by actual measured tumor volume. Keywords: Urinary, Kidney, Metastases, Oncology, Tumor Response, Volume Analysis, Outcomes Analysis ClinicalTrials.gov registration no. NCT01865747 © RSNA, 2023 Supplemental material is available for this article.


Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/diagnostic imaging , Response Evaluation Criteria in Solid Tumors , Retrospective Studies , Tomography, X-Ray Computed/methods , Kidney Neoplasms/diagnostic imaging
5.
Acad Radiol ; 30(3): 412-420, 2023 Mar.
Article En | MEDLINE | ID: mdl-35644754

RATIONALE AND OBJECTIVES: To develop artificial intelligence (AI) system that assists in checking endotracheal tube (ETT) placement on chest X-rays (CXRs) and evaluate whether it can move into clinical validation as a quality improvement tool. MATERIALS AND METHODS: A retrospective data set including 2000 de-identified images from intensive care unit patients was split into 1488 for training and 512 for testing. AI was developed to automatically identify the ETT, trachea, and carina using semantically embedded neural networks that combine a declarative knowledge base with deep neural networks. To check the ETT tip placement, a "safe zone" was computed as the region inside the trachea and 3-7 cm above the carina. Two AI outputs were evaluated: (1) ETT overlay, (2) ETT misplacement alert messages. Clinically relevant performance metrics were compared against prespecified thresholds of >85% overlay accuracy and positive predictive value (PPV) > 30% and negative predictive value NPV > 95% for alerts to move into clinical validation. RESULTS: An ETT was present in 285 of 512 test cases. The AI detected 95% (271/285) of ETTs, 233 (86%) of these with accurate tip localization. The system (correctly) did not generate an ETT overlay in 221/227 CXRs where the tube was absent for an overall overlay accuracy of 89% (454/512). The alert messages indicating that either the ETT was misplaced or not detected had a PPV of 83% (265/320) and NPV of 98% (188/192). CONCLUSION: The chest X-ray AI met prespecified performance thresholds to move into clinical validation.


Artificial Intelligence , Intubation, Intratracheal , Humans , Retrospective Studies , Intubation, Intratracheal/methods , Trachea/diagnostic imaging , Neural Networks, Computer
6.
Cancer Imaging ; 22(1): 34, 2022 Jul 14.
Article En | MEDLINE | ID: mdl-35836271

BACKGROUND: To evaluate the anatomic site(s) of initial disease progression in patients with castration resistant metastatic prostate cancer (mCRPC) in the presence or absence of pre-treatment visceral metastases while on systemic therapy. METHODS: This is a retrospective cohort study of mCRPC patients who have baseline and at least one follow up bone scan and CT chest, abdomen and pelvis (CAP). Disease progression was determined by RECIST and/or ≥ 30% increase in automated bone scan lesion area score. Kaplan-Meier plot was used to estimate the median progression free survival and log-rank tests were used to compare anatomic sites. RESULTS: Of 203 patients, 61 (30%) had pre-treatment visceral metastases. Patients with baseline visceral disease were 1.5 times more likely to develop disease progression (HR = 1.53; 95% CI, 1.03-2.26). Disease progression was a result of worsening bone scan disease (42% (16/38)) versus visceral (32% (12/38)) or lymph node disease (3% (1/38)) by CT or a combination thereof (23% (9/38)). Median time to progression (TTP) did not differ by anatomic location of initial progression (p = 0.86). Development of new lesions occurred in 50% of those visceral patients with soft tissue only progression and was associated with a significantly longer TTP (3.1 months (2.8-4.3 months) than those with worsening of pre-existing lesions (1.8 months (1.6-2.7 months); p = 0.04. CONCLUSIONS: Patients with pre-treatment visceral metastases in mCRPC are more likely to experience disease progression of bone disease with the initial anatomic site of progression similar to those without baseline visceral involvement.


Prostatic Neoplasms, Castration-Resistant , Castration , Disease Progression , Humans , Male , Prostatic Neoplasms, Castration-Resistant/pathology , Retrospective Studies , Tomography, X-Ray Computed/methods , Treatment Outcome
7.
Eur J Radiol Open ; 9: 100426, 2022.
Article En | MEDLINE | ID: mdl-35693043

Treatment response assessment by imaging plays a vital role in evaluating changes in solid tumors during oncology therapeutic clinical trials. Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 is the reference standard imaging response criteria and provides details regarding image acquisition, image interpretation and categorical response classification. While RECIST 1.1 is applied for the majority of clinical trials in solid tumors, other criteria and modifications have been introduced when RECIST 1.1 outcomes may be incomplete. Available criteria beyond RECIST 1.1 can be explored in an algorithmic fashion dependent on imaging modality, tumor type and method of treatment. Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST) is available for use with PET/CT. Modifications to RECIST 1.1 can be tumor specific, including mRECIST for hepatocellular carcinoma and mesothelioma. Choi criteria for gastrointestinal stromal tumors incorporate tumor density with alterations to categorical response thresholds. Prostate Cancer Working Group 3 (PCWG3) imaging criteria combine RECIST 1.1 findings with those of bone scans. In addition, multiple response criteria have been created to address atypical imaging responses in immunotherapy.

8.
Radiol Imaging Cancer ; 3(3): e210008, 2021 05.
Article En | MEDLINE | ID: mdl-33988475

Drug discovery and approval in oncology is mediated by the use of imaging to evaluate drug efficacy in clinical trials. Imaging is performed while patients receive therapy to evaluate their response to treatment. Response criteria, specifically Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1), are standardized and can be used at different time points to classify response into the categories of complete response, partial response, stable disease, or disease progression. At the trial level, categorical responses for all patients are summated into image-based trial endpoints. These outcome measures, including objective response rate (ORR) and progression-free survival (PFS), are characteristics that can be derived from imaging and can be used as surrogates for overall survival (OS). Similar to OS, ORR and PFS describe the efficacy of a drug. U.S. Food and Drug Administration (FDA) regulatory approval requires therapies to demonstrate direct evidence of clinical benefit, such as improved OS. However, multiple programs have been created to expedite drug approval for life-threatening illnesses, including advanced cancer. ORR and PFS have been accepted by the FDA as adequate predictors of OS on which to base drug approval decisions, thus substantially shortening the time and cost of drug development (1). Use of imaging surrogate markers for drug approval has become increasingly common, accounting for more than 90% of approvals through the Accelerated Approval Program and allowing for use of many therapies which have altered the course of cancer. Keywords: Oncology, Tumor Response RSNA, 2021.


Medical Oncology , Pharmaceutical Preparations , Endpoint Determination , Humans , Progression-Free Survival , Response Evaluation Criteria in Solid Tumors
9.
Pediatr Blood Cancer ; 68(5): e28964, 2021 05.
Article En | MEDLINE | ID: mdl-33624399

Standardized guidelines for assessing tumor response to therapy are essential for designing and conducting clinical trials. The Response Evaluation Criteria In Solid Tumors (RECIST) provide radiological standards for assessment of solid tumors. However, no such guidelines exist for the evaluation of intraocular cancer, and ocular oncology clinical trials have largely relied on indirect measures of therapeutic response-such as progression-free survival-to evaluate the efficacy of treatment agents. Herein, we propose specific criteria for evaluating treatment response of retinoblastoma, the most common pediatric intraocular cancer, and emphasize a multimodal imaging approach for comprehensive assessment of retinoblastoma tumors in clinical trials.


Response Evaluation Criteria in Solid Tumors , Retinal Neoplasms/diagnostic imaging , Retinoblastoma/diagnostic imaging , Humans , Multimodal Imaging/methods
10.
Radiology ; 292(1): 103-109, 2019 07.
Article En | MEDLINE | ID: mdl-31084479

Background Progression-free survival (PFS) determined by Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1) is the reference standard to assess efficacy of treatments in patients with clear cell renal cell carcinoma. Purpose To assess the most common components of radiologic progressive disease as defined by RECIST 1.1 in patients with clear cell renal cell carcinoma and how the progression events impact PFS. Materials and Methods This secondary analysis of the phase III METEOR trial conducted between 2013 and 2014 included patients with metastatic clear cell renal cell carcinoma, with at least one target lesion at baseline and one follow-up time point, who were determined according to RECIST 1.1 to have progressive disease. A chest, abdominal, and pelvic scan were acquired at each time point. Kruskal-Wallis analysis was used to test differences in median PFS among the RECIST 1.1 progression events. The Holm-Bonferroni method was used to compare the median PFS of the progression events for the family-wise error rate of 5% to adjust P values for multiple comparisons. Results Of the 395 patients (296 men, 98 women, and one patient with sex not reported; mean age, 61 years ± 10), 73 (18.5%) had progression due to non-target disease, 105 (26.6%) had new lesions, and 126 (31.9%) had progression of target lesions (defined by an increase in the sum of diameters). Patients with progression of non-target disease and those with new lesions had shorter PFS than patients with progression defined by the target lesions (median PFS, 2.8 months [95% confidence interval {CI}: 1.9 months, 3.7 months] and 3.6 months [95% CI: 3.3 months, 3.7 months] vs 5.4 months [95% CI: 5.0 months, 5.5 months], respectively [P < .01]). Conclusion The most common causes for radiologic progression of renal cell carcinoma were based on non-target disease and new lesions rather than change in target lesions, despite this being considered uncommon in the Response Evaluation Criteria in Solid Tumors version 1.1 literature. © RSNA, 2019 See also the editorial by Kuhl in this issue.


Carcinoma, Renal Cell/diagnostic imaging , Kidney Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Response Evaluation Criteria in Solid Tumors , Tomography, X-Ray Computed/methods , Adult , Carcinoma, Renal Cell/secondary , Carcinoma, Renal Cell/therapy , Disease Progression , Disease-Free Survival , Female , Humans , Kidney/diagnostic imaging , Kidney Neoplasms/secondary , Kidney Neoplasms/therapy , Male , Middle Aged , Retrospective Studies
11.
Radiology ; 287(1): 326-332, 2018 04.
Article En | MEDLINE | ID: mdl-29232184

Purpose To determine feasibility and safety of biopsy and repeat biopsy for assessment of programmed cell death ligand-1 (PD-L1) status. Materials and Methods This retrospective analysis reviewed 101 patients who underwent transthoracic core needle biopsy for the KEYNOTE-001 (MK-3475) clinical trial of pembrolizumab, an antiprogrammed cell death-1 therapy for non-small cell lung cancer, from May 2012 to September 2014. Sixty-one male patients (mean age, 66.1 years; range 36-83 years) and 40 female patients (mean age, 66.8 years; age range, 36-90 years) were included. Data collected included population characteristics, treatment history, target location, size, and depth from pleura. Adequacy of the tissue sample for diagnostic testing and rates of biopsy-related complications were assessed. Statistical analysis was performed by using univariate and multivariate generalized linear models to determine significant risk factors for biopsy complications. Results A total of 110 intrathoracic biopsies were performed, and 101 (91.8%) were performed as repeat biopsies subsequent to a previous percutaneous or bronchoscopic biopsy or previous surgical biopsy or resection. More than 84.5% (93 of 110) of biopsies were performed in patients who had undergone previous local or systemic therapy. Specimens were adequate for evaluation of PD-L1 expression in 96.4% of biopsies. Procedure-related complications occurred in 28 biopsies (25.4%); pneumothorax was most common (22.7%). Overall mean number of core needle biopsy samples obtained was 7.9 samples. Conclusion Image-guided transthoracic core needle biopsy is an effective method for obtaining tissue for PD-L1 expression analysis. © RSNA, 2017.


Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/urine , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Immunotherapy/methods , Lung Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Biopsy, Large-Core Needle/adverse effects , Biopsy, Large-Core Needle/methods , Carcinoma, Non-Small-Cell Lung/metabolism , Feasibility Studies , Female , Humans , Image-Guided Biopsy/adverse effects , Image-Guided Biopsy/methods , Lung/metabolism , Lung/pathology , Lung Neoplasms/metabolism , Male , Middle Aged , Radiography, Interventional/methods , Retrospective Studies , Tomography, X-Ray Computed/methods
12.
Semin Respir Crit Care Med ; 37(5): 689-707, 2016 10.
Article En | MEDLINE | ID: mdl-27732991

Each year, more than 1 million persons worldwide are found to have a lung nodule that carries a risk of being malignant. In reality, the vast majority of lung nodules are benign, whether identified by screening or incidentally. The consequences of delaying or missing the diagnosis of lung cancer can be substantial, as can be the consequences of invasive procedures on patients with benign lung nodules. The challenge for the clinician caring for these patients is to differentiate between benign and malignant nodules with the least harm possible. In this review, we will discuss management strategies of the indeterminate pulmonary nodule and will review recent advances and harm-reduction strategies.


Diagnosis, Differential , Lung Neoplasms/diagnosis , Solitary Pulmonary Nodule/diagnosis , Humans , Incidental Findings
13.
N Engl J Med ; 375(9): 819-29, 2016 Sep 01.
Article En | MEDLINE | ID: mdl-27433843

BACKGROUND: Approximately 75% of objective responses to anti-programmed death 1 (PD-1) therapy in patients with melanoma are durable, lasting for years, but delayed relapses have been noted long after initial objective tumor regression despite continuous therapy. Mechanisms of immune escape in this context are unknown. METHODS: We analyzed biopsy samples from paired baseline and relapsing lesions in four patients with metastatic melanoma who had had an initial objective tumor regression in response to anti-PD-1 therapy (pembrolizumab) followed by disease progression months to years later. RESULTS: Whole-exome sequencing detected clonal selection and outgrowth of the acquired resistant tumors and, in two of the four patients, revealed resistance-associated loss-of-function mutations in the genes encoding interferon-receptor-associated Janus kinase 1 (JAK1) or Janus kinase 2 (JAK2), concurrent with deletion of the wild-type allele. A truncating mutation in the gene encoding the antigen-presenting protein beta-2-microglobulin (B2M) was identified in a third patient. JAK1 and JAK2 truncating mutations resulted in a lack of response to interferon gamma, including insensitivity to its antiproliferative effects on cancer cells. The B2M truncating mutation led to loss of surface expression of major histocompatibility complex class I. CONCLUSIONS: In this study, acquired resistance to PD-1 blockade immunotherapy in patients with melanoma was associated with defects in the pathways involved in interferon-receptor signaling and in antigen presentation. (Funded by the National Institutes of Health and others.).


Drug Resistance, Neoplasm/genetics , Immunotherapy , Janus Kinase 1/genetics , Janus Kinase 2/genetics , Melanoma/genetics , Mutation , Programmed Cell Death 1 Receptor/antagonists & inhibitors , beta 2-Microglobulin/genetics , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Biopsy , Exome , Gene Expression Regulation, Neoplastic , Genes, MHC Class I , Humans , Interferon-gamma/therapeutic use , Melanoma/drug therapy , Melanoma/secondary , Programmed Cell Death 1 Receptor/metabolism , Recurrence , Sequence Analysis, DNA , Signal Transduction
14.
J Thorac Imaging ; 31(4): 190-200, 2016 Jul.
Article En | MEDLINE | ID: mdl-27306387

Since the release of the US Preventive Services Task Force and Centers for Medicare and Medicaid Services recommendations for lung cancer screening, low-dose chest computed tomography screening has moved from the research arena to clinical practice. Lung cancer screening programs must reach beyond image acquisition and interpretation and engage in a multidisciplinary effort of clinical shared decision-making, standardization of imaging and nodule management, smoking cessation, and patient follow-up. Standardization of radiologic reports and nodule management will systematize patient care, provide quality assurance, further reduce harm, and contain health care costs. Although the National Lung Screening Trial results and eligibility criteria of a heavy smoking history are the foundation for the standard guidelines for low-dose chest computed tomography screening in the United States, currently only 27% of patients diagnosed with lung cancer would meet US lung cancer screening recommendations. Current and future efforts must be directed to better delineate those patients who would most benefit from screening and to ensure that the benefits of screening reach all socioeconomic strata and racial and ethnic minorities. Further optimization of lung cancer screening program design and patient eligibility will assure that lung cancer screening benefits will outweigh the potential risks to our patients.


Early Detection of Cancer/methods , Lung Neoplasms/diagnostic imaging , Mass Screening/methods , Tomography, X-Ray Computed , Humans , Lung/diagnostic imaging , Risk Factors
15.
Clin Imaging ; 40(2): 288-95, 2016.
Article En | MEDLINE | ID: mdl-26362352

Lung cancer remains the leading cause of cancer-related death in the United States. An effective screening tool for early lung cancer detection has long been sought. Early chest radiograph and low-dose computed tomography (LDCT) screening trials were promising and demonstrated increased cancer detection. However, these studies were not able to improve lung cancer mortality. The National Lung Screening Trial resulted in decreased lung cancer mortality with LDCT screening in a high-risk population. Similar trials are currently underway in Europe. With LDCT now being widely implemented, it is paramount for radiologists to understand the evidence for lung cancer screening.


Early Detection of Cancer/methods , Lung Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Humans , Radiation Dosage
16.
Eur J Cancer ; 51(17): 2689-97, 2015 Nov.
Article En | MEDLINE | ID: mdl-26364516

PURPOSE: One of the hallmarks of cancer immunotherapy is the long duration of responses, evident with cytokines like interleukin-2 or a variety of cancer vaccines. However, there is limited information available on very long term outcomes of patients treated with anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibodies. Tremelimumab is an anti-CTLA-4 antibody of immunoglobulin G2 (IgG2) isotype initially tested in patients with advanced melanoma over 12 years ago. METHODS: We reviewed the outcomes of patients with advanced melanoma enrolled in four phase 1 and 2 tremelimumab trials at two sites to determine response rates and long-term survival. RESULTS: A total of 143 patients were enrolled at two institutions from 2002 to 2008. Tremelimumab administration varied between a single dose of 0.01 mg/kg and 15 mg/kg every 3 months. Median overall survival was 13 months (95% confidence interval (CI), 10-16.6), ranging from less than a month to 12+ years. An objective response rate of 15.6% was observed, with median duration of response of 6.5 years, range of 3-136+ months. The Kaplan-Meier estimated 5 year survival rate was 20% (95% CI, 13-26%), with 10 and 12.5 year survival rates of 16% (95% CI, 9-23%). CONCLUSIONS: CTLA-4 blockade with tremelimumab can lead to very long duration of objective anti-tumour responses beyond 12 years.


Antibodies, Monoclonal/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , Immunotherapy/methods , Melanoma/therapy , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/immunology , Antineoplastic Agents/therapeutic use , CTLA-4 Antigen/immunology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Humans , Kaplan-Meier Estimate , Male , Melanoma/immunology , Melanoma/mortality , Middle Aged , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Remission Induction , Retrospective Studies , Survival Rate , Survivors/statistics & numerical data , Time Factors , Young Adult
17.
Cancer Cell ; 27(2): 240-56, 2015 Feb 09.
Article En | MEDLINE | ID: mdl-25600339

Combined BRAF- and MEK-targeted therapy improves upon BRAF inhibitor (BRAFi) therapy but is still beset by acquired resistance. We show that melanomas acquire resistance to combined BRAF and MEK inhibition by augmenting or combining mechanisms of single-agent BRAFi resistance. These double-drug resistance-associated genetic configurations significantly altered molecular interactions underlying MAPK pathway reactivation. (V600E)BRAF, expressed at supraphysiological levels because of (V600E)BRAF ultra-amplification, dimerized with and activated CRAF. In addition, MEK mutants enhanced interaction with overexpressed (V600E)BRAF via a regulatory interface at R662 of (V600E)BRAF. Importantly, melanoma cell lines selected for resistance to BRAFi+MEKi, but not those to BRAFi alone, displayed robust drug addiction, providing a potentially exploitable therapeutic opportunity.


Drug Resistance, Neoplasm/genetics , Melanoma/drug therapy , Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , Cell Line, Tumor , Humans , MAP Kinase Signaling System/genetics , Melanoma/pathology , Molecular Targeted Therapy , Mutation , Protein Kinase Inhibitors/administration & dosage
18.
Radiol Res Pract ; 2012: 258524, 2012.
Article En | MEDLINE | ID: mdl-22693668

The midbrain represents the uppermost portion of the brainstem, containing numerous important nuclei and white matter tracts, most of which are involved in motor control, as well as the auditory and visual pathways. Notable midbrain nuclei include the superior and inferior colliculus nuclei, red nucleus, substantia nigra, oculomotor nuclear complex, and trochlear nucleus. In addition, white matter tracts include the brachium conjunctivum, medial and lateral lemniscus, spinothalamic tracts, and the fiber tracts within the cerebral peduncles. Although neurologically vital, many of these small midbrain nuclei and white matter tracts are not easily individually identified on neuroimaging. However, given their diverse functions, midbrain pathology often leads to distinct clinical syndromes. A review and understanding of the location and relationships between the different midbrain nuclei and fiber tracts will allow more precise correlation of radiologic findings with patient pathology and symptomatology. Particular syndromes associated with midbrain pathology include the Weber, Claude, Benedikt, Nothnagel, and Parinaud syndromes. The oculomotor and trochlear cranial nerves also reside at this level. An understanding of their functions as well as their projected courses from the midbrain towards the eye allows identification of distinct locations which are particularly vulnerable to pathology.

19.
J Biol Chem ; 283(18): 12305-13, 2008 May 02.
Article En | MEDLINE | ID: mdl-18299320

Hsp27 inhibits mitochondrial injury and apoptosis in both normal and cancer cells by an unknown mechanism. To test the hypothesis that Hsp27 decreases apoptosis by inhibiting Bax, Hsp27 expression was manipulated in renal epithelial cells before transient metabolic stress, an insult that activates Bax, induces mitochondrial injury, and causes apoptosis. Compared with control, enhanced Hsp27 expression inhibited conformational Bax activation, oligomerization, and translocation to mitochondria, reduced the leakage of both cytochrome c and apoptosis-inducing factor, and significantly improved cell survival by >50% after stress. In contrast, Hsp27 down-regulation using RNA-mediated interference promoted Bax activation, increased Bax translocation, and reduced cell survival after stress. Immunoprecipitation did not detect Hsp27-Bax interaction before, during, or after stress, suggesting that Hsp27 indirectly inhibits Bax. During stress, Hsp27 expression prevented the inactivation of Akt, a pro-survival kinase, and increased the interaction between Akt and Bax, an Akt substrate. In contrast, Hsp27 RNA-mediated interference promoted Akt inactivation during stress. Hsp27 up- or down-regulation markedly altered the activity of phosphatidylinositol 3-kinase (PI3-kinase), a major regulator of Akt. Furthermore, distinct PI3-kinase inhibitors completely abrogated the protective effect of Hsp27 expression on Akt activation, Bax inactivation, and cell survival. These data show that Hsp27 antagonizes Bax-mediated mitochondrial injury and apoptosis by promoting Akt activation via a PI3-kinase-dependent mechanism.


Apoptosis , Heat-Shock Proteins/metabolism , Neoplasm Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , bcl-2-Associated X Protein/metabolism , Adenoviridae , Animals , Caspase 3/metabolism , Cell Line , Cell Survival/drug effects , Cytoprotection/drug effects , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , HSP27 Heat-Shock Proteins , Heat-Shock Proteins/chemistry , Humans , Mice , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/enzymology , Mitochondrial Membranes/pathology , Molecular Chaperones , Neoplasm Proteins/chemistry , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Phosphoserine/metabolism , Protein Binding/drug effects , Protein Structure, Quaternary , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/metabolism
20.
J Biol Chem ; 281(12): 7873-80, 2006 Mar 24.
Article En | MEDLINE | ID: mdl-16407317

Although hsp70 antagonizes apoptosis-inducing factor (AIF)-mediated cell death, the relative importance of preventing its release from mitochondria versus sequestering leaked AIF in the cytosol remains controversial. To dissect these two protective mechanisms, hsp70 deletion mutants lacking either the chaperone function (hsp70-deltaEEVD) or ATPase function (hsp70-deltaATPase) were selectively overexpressed before exposing cells to a metabolic inhibitor, an insult sufficient to cause mitochondrial AIF release, nuclear AIF accumulation, and apoptosis. Compared with empty vector, overexpression of wild type human hsp70 inhibited bax activation and reduced mitochondrial AIF release after injury. In contrast, mutants lacking either the chaperone function (hsp70-deltaEEVD) or the ATP hydrolytic domain (hsp70-deltaATPase) failed to prevent mitochondrial AIF release. Although hsp70-deltaEEVD did not inhibit bax activation or mitochondrial membrane injury after cell stress, this hsp70 mutant co-immunoprecipitated with leaked AIF in injured cells and decreased nuclear AIF accumulation. In contrast, hsp70-deltaATPase did not interact with AIF either in intact cells or in a cell-free system and furthermore, failed to prevent nuclear AIF accumulation. These results demonstrate that mitochondrial protection against bax-mediated injury requires both intact chaperone and ATPase functions, whereas the ATPase domain is critical for sequestering AIF in the cytosol.


Apoptosis Inducing Factor/metabolism , Cell Nucleus/metabolism , HSP70 Heat-Shock Proteins/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/chemistry , Adenoviridae/metabolism , Animals , Apoptosis , Cell Membrane/metabolism , Cytosol/metabolism , Dithiothreitol/chemistry , Gene Deletion , Humans , Hydrolysis , Immunoblotting , Immunoprecipitation , Kidney , Membrane Proteins/metabolism , Mice , Mitochondria/metabolism , Models, Statistical , Molecular Chaperones/metabolism , Opossums , Protein Structure, Tertiary , bcl-2-Associated X Protein/metabolism
...