Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
2.
Acad Radiol ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39294053

ABSTRACT

RATIONALE AND OBJECTIVES: Traumatic neuroradiological emergencies necessitate rapid and accurate diagnosis, often relying on computed tomography (CT). However, the associated ionizing radiation poses long-term risks. Modern artificial intelligence reconstruction algorithms have shown promise in reducing radiation dose while maintaining image quality. Therefore, we aimed to evaluate the dose reduction capabilities of a deep learning-based denoising (DLD) algorithm in traumatic neuroradiological emergency CT scans. MATERIALS AND METHODS: This retrospective single-center study included 100 patients with neuroradiological trauma CT scans. Full-dose (100%) and low-dose (25%) simulated scans were processed using iterative reconstruction (IR2) and DLD. Subjective and objective image quality assessments were performed by four neuroradiologists alongside clinical endpoint analysis. Bayesian sensitivity and specificity were computed with 95% credible intervals. RESULTS: Subjective analysis showed superior scores for 100% DLD compared to 100% IR2 and 25% IR2 (p < 0.001). No significant differences were observed between 25% DLD and 100% IR2. Objective analysis revealed no significant CT value differences but higher noise at 25% dose for DLD and IR2 compared to 100% (p < 0.001). DLD exhibited lower noise than IR2 at both dose levels (p < 0.001). Clinical endpoint analysis indicated equivalence to 100% IR2 in fracture detection for all datasets, with sensitivity losses in hemorrhage detection at 25% IR2. DLD (25% and 100%) maintained comparable sensitivity to 100% IR2. All comparisons demonstrated robust specificity. CONCLUSIONS: The evaluated algorithm enables high-quality, fully diagnostic CT scans at 25% of the initial radiation dose and improves patient care by reducing unnecessary radiation exposure.

3.
Diagnostics (Basel) ; 14(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39272626

ABSTRACT

In neuroimaging, there is no equivalent alternative to magnetic resonance imaging (MRI). However, image acquisitions are generally time-consuming, which may limit utilization in some cases, e.g., in patients who cannot remain motionless for long or suffer from claustrophobia, or in the event of extensive waiting times. For multiple sclerosis (MS) patients, MRI plays a major role in drug therapy decision-making. The purpose of this study was to evaluate whether an ultrafast, T2-weighted (T2w), deep learning-enhanced (DL), echo-planar-imaging-based (EPI) fluid-attenuated inversion recovery (FLAIR) sequence (FLAIRUF) that has targeted neurological emergencies so far might even be an option to detect MS lesions of the brain compared to conventional FLAIR sequences. Therefore, 17 MS patients were enrolled prospectively in this exploratory study. Standard MRI protocols and ultrafast acquisitions were conducted at 3 tesla (T), including three-dimensional (3D)-FLAIR, turbo/fast spin-echo (TSE)-FLAIR, and FLAIRUF. Inflammatory lesions were grouped by size and location. Lesion conspicuity and image quality were rated on an ordinal five-point Likert scale, and lesion detection rates were calculated. Statistical analyses were performed to compare results. Altogether, 568 different lesions were found. Data indicated no significant differences in lesion detection (sensitivity and positive predictive value [PPV]) between FLAIRUF and axially reconstructed 3D-FLAIR (lesion size ≥3 mm × ≥2 mm) and no differences in sensitivity between FLAIRUF and TSE-FLAIR (lesion size ≥3 mm total). Lesion conspicuity in FLAIRUF was similar in all brain regions except for superior conspicuity in the occipital lobe and inferior conspicuity in the central brain regions. Further findings include location-dependent limitations of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as artifacts such as spatial distortions in FLAIRUF. In conclusion, FLAIRUF could potentially be an expedient alternative to conventional methods for brain imaging in MS patients since the acquisition can be performed in a fraction of time while maintaining good image quality.

4.
Diagnostics (Basel) ; 14(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39001327

ABSTRACT

Before revascularization, moyamoya patients require hemodynamic evaluation. In this study, we evaluated the scoring system Prior Infarcts, Reactivity and Angiography in Moyamoya Disease (PIRAMID). We also devised a new scoring system, MRI-Based Assessment of Risk for Stroke in Moyamoya Angiopathy (MARS-MMA), and compared the scoring systems with respect to the capability to predict impaired [15O]water PET cerebral perfusion reserve capacity (CPR). We evaluated 69 MRI, 69 DSA and 38 [15O]water PET data sets. The PIRAMID system was validated by ROC curve analysis with neurological symptomatology as a dependent variable. The components of the MARS-MMA system and their weightings were determined by binary logistic regression analysis. The comparison of PIRAMID and MARS-MMA was performed by ROC curve analysis. The PIRAMID score correlated well with the symptomatology (AUC = 0.784). The MARS-MMA system, including impaired breath-hold-fMRI, the presence of the Ivy sign and arterial wall contrast enhancement, correlated slightly better with CPR impairment than the PIRAMID system (AUC = 0.859 vs. 0.827, Akaike information criterion 140 vs. 146). For simplified clinical use, we determined three MARS-MMA grades without loss of diagnostic performance (AUC = 0.855). The entirely MRI-based MARS-MMA scoring system might be a promising tool to predict the risk of stroke.

5.
Cancers (Basel) ; 16(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791906

ABSTRACT

A fully diagnostic MRI glioma protocol is key to monitoring therapy assessment but is time-consuming and especially challenging in critically ill and uncooperative patients. Artificial intelligence demonstrated promise in reducing scan time and improving image quality simultaneously. The purpose of this study was to investigate the diagnostic performance, the impact on acquisition acceleration, and the image quality of a deep learning optimized glioma protocol of the brain. Thirty-three patients with histologically confirmed glioblastoma underwent standardized brain tumor imaging according to the glioma consensus recommendations on a 3-Tesla MRI scanner. Conventional and deep learning-reconstructed (DLR) fluid-attenuated inversion recovery, and T2- and T1-weighted contrast-enhanced Turbo spin echo images with an improved in-plane resolution, i.e., super-resolution, were acquired. Two experienced neuroradiologists independently evaluated the image datasets for subjective image quality, diagnostic confidence, tumor conspicuity, noise levels, artifacts, and sharpness. In addition, the tumor volume was measured in the image datasets according to Response Assessment in Neuro-Oncology (RANO) 2.0, as well as compared between both imaging techniques, and various clinical-pathological parameters were determined. The average time saving of DLR sequences was 30% per MRI sequence. Simultaneously, DLR sequences showed superior overall image quality (all p < 0.001), improved tumor conspicuity and image sharpness (all p < 0.001, respectively), and less image noise (all p < 0.001), while maintaining diagnostic confidence (all p > 0.05), compared to conventional images. Regarding RANO 2.0, the volume of non-enhancing non-target lesions (p = 0.963), enhancing target lesions (p = 0.993), and enhancing non-target lesions (p = 0.951) did not differ between reconstruction types. The feasibility of the deep learning-optimized glioma protocol was demonstrated with a 30% reduction in acquisition time on average and an increased in-plane resolution. The evaluated DLR sequences improved subjective image quality and maintained diagnostic accuracy in tumor detection and tumor classification according to RANO 2.0.

6.
J Clin Med ; 13(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792273

ABSTRACT

Background/Objectives: To evaluate radiation exposure in standard interventional radiology procedures using a twin robotic X-ray system compared to a state-of-the-art conventional angiography system. Methods: Standard interventional radiology procedures (port implantation, SIRT, and pelvic angiography) were simulated using an anthropomorphic Alderson RANDO phantom (Alderson Research Laboratories Inc. Stamford, CT, USA) on an above-the-table twin robotic X-ray scanner (Multitom Rax, Siemens Healthineers, Forchheim, Germany) and a conventional below-the-table angiography system (Artis Zeego, Siemens Healthineers, Forchheim, Germany). The phantom's radiation exposure (representing the potential patient on the procedure table) was measured with thermoluminescent dosimeters. Height-dependent dose curves were generated for examiners and radiation technologists in representative positions using a RaySafe X2 system (RaySafe, Billdal, Sweden). Results: For all scenarios, the device-specific dose distribution differs depending on the imaging chain, with specific advantages and disadvantages. Radiation exposure for the patient is significantly increased when using the Multitom Rax for pelvic angiography compared to the Artis Zeego, which is evident in the dose progression through the phantom's body as well as in the organ-related radiation exposure. In line with these findings, there is an increased radiation exposure for the performing proceduralist, especially at eye level, which can be significantly minimized by using protective equipment (p < 0.001). Conclusions: In this study, the state-of-the-art conventional below-the-table angiography system is associated with lower radiation dose exposures for both the patient and the interventional radiology physician compared to an above-the-table twin robotic X-ray system for pelvic angiographies. However, in other clinical scenarios (port implantation or SIRT), both devices are suitable options with acceptable radiation exposure.

9.
Diagnostics (Basel) ; 14(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611589

ABSTRACT

A 61-year-old patient was diagnosed with a left-sided falx meningioma. Histopathological analysis following extirpation showed a meningothelial meningioma ZNS WHO grade 1 with sparse mitoses. Over the course of 12 years, the patient received irradiation (54.0 Gy), peptide radio-receptor therapy (177Lu-DOMITATE) and targeted therapy (mTOR inhibitor). Follow-up imaging revealed an increased size of the residual tumor. Due to increased liver function parameters, imaging of the liver was performed, showing widespread space-occupying lesions with atypical appearance. Biopsy revealed metastasis of the meningioma, now with 2.7 mitoses/mm2, necrosis and homozygous CDKN2A/B deletion, corresponding to an anaplastic CNS meningioma WHO grade 3. A second small meningioma on the left petroclival side has been consistent in size over 12 years. Metastatic meningiomas pose a pertinent clinical challenge due to poor prognosis. The lung, bone, liver and cervical lymph nodes are the most common sites of extracranial metastasis. According to the World Health Organization criteria, the most important predictive factor for recurrence and metastasis is the tumor grade.

11.
Cancer Med ; 12(24): 22047-22055, 2023 12.
Article in English | MEDLINE | ID: mdl-38063340

ABSTRACT

INTRODUCTION: Glioblastoma (GBM) is a tumor with rapid growth and a possible relationship to elevated intracranial pressure (ICP). High ICP may not always be associated with clinical signs. A non-invasive technique for assessment of ICP is measuring the optic nerve sheath diameter (ONSD). Identifying patients who need immediate intervention is of importance in neuro-oncological care. The goal of this study is to assess the available magnetic resonance imaging (MRI) of patients with GBM with respect to pre- and postoperative ONSD. METHODS AND MATERIALS: Retrospective data analysis was performed on all patients operated for GBM at a tertiary care center between 2010 and 2020. Two pre and one postoperative MRI had to be available. Clinical data and ONSD at multiple time points were analyzed and correlated, as well as preoperative volumetrics. RESULTS: Sixty-seven patients met the inclusion criteria. Clinical signs of elevated ICP were seen in 25.4% (n = 17), while significant perifocal edema was present in 67.2% (n = 45) of patients. Clinical signs of preoperatively elevated ICP were associated with significantly elevated ONSD at diagnosis (p < 0.001) as well as preoperative tumor volume (p < 0.001). Significant perifocal edema at the time of diagnosis was associated with elevated ONSD (p = 0.029) and higher tumor volume (p = 0.003). In patients with significant edema, ONSD increased significantly between preoperative MRIs (p = 0.003/005). In patients with clinical signs of raised ICP, ONSD also increased, whereas it was stable in asymptomatic patients (yes: 5.01+/-4.17 to 5.83+/-0.55 mm, p = 0.010, no: 5.17+/-0.46 mm to 5.38+/-0.41 mm, p = 0.81). A significant increase of ONSD from diagnosis to preoperative MRI and a significant decrease until 3 months postoperatively were observed (p < 0.001). CONCLUSIONS: ONSD might help identify high ICP in patients with GBM. In this first-of-its kind study, we observed a significant increase of ONSD preoperatively, likely associated with edema. Postoperatively, ONSD decreased significantly until 3 months after surgery and increased again at 12 months. Further prospective data collection is warranted.


Subject(s)
Glioblastoma , Glioma , Intracranial Hypertension , Humans , Retrospective Studies , Optic Nerve/diagnostic imaging , Optic Nerve/pathology , Intracranial Pressure/physiology , Intracranial Hypertension/diagnosis , Intracranial Hypertension/etiology , Intracranial Hypertension/pathology , Glioma/pathology , Glioblastoma/pathology , Edema/pathology , Ultrasonography/methods
12.
Nervenarzt ; 94(12): 1087-1096, 2023 Dec.
Article in German | MEDLINE | ID: mdl-37848647

ABSTRACT

BACKGROUND: Nerve injuries are a frequent problem in routine clinical practice and require intensive interdisciplinary care. OBJECTIVE: The current status of imaging to confirm the diagnosis of nerve injuries is described. The role of high-resolution ultrasound and magnetic resonance imaging (MRI) in the diagnostics and follow-up of peripheral nerve injuries is elaborated. MATERIAL AND METHODS: Review of the current state of imaging to confirm the diagnosis of nerve injuries. RESULTS: Depending on the suspected site of damage, the primary domain of magnetic resonance (MR) imaging (MR neurography) is injuries in the region of the spine, nerve roots, brachial plexus and lumbar plexus, pelvis and proximal thigh. In contrast, in other peripheral nerve lesions of the extremities the advantages of high-resolution nerve ultrasound in a dynamic setting predominate. The MR neurography is indicated here, especially in the frequent bottleneck syndromes and only in very isolated and selected cases. CONCLUSION: In addition to a correct anatomical assignment, the timely decision for a possible intervention and the appropriate concomitant treatment are an important basis for a favorable prognosis of nerve injuries. Imaging techniques should therefore be used early in the diagnostics and follow-up controls of peripheral nerve injuries.


Subject(s)
Peripheral Nerve Injuries , Humans , Peripheral Nerve Injuries/diagnostic imaging , Magnetic Resonance Imaging/methods , Ultrasonography , Syndrome
13.
Vasc Med ; 28(6): 592-603, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37792749

ABSTRACT

The spectrum of venous thromboembolic (VTE) disease encompasses both acute deep venous thrombosis (DVT) and chronic postthrombotic changes (CPC). A large percentage of acute DVT patients experience recurrent VTE despite adequate anticoagulation, and may progress to CPC. Further, the role of iliocaval venous obstruction (ICVO) in lower-extremity VTE has been increasingly recognized in recent years. Imaging continues to play an important role in both acute and chronic venous disease. Venous duplex ultrasound remains the gold standard for diagnosing acute VTE. However, imaging of CPC is more complex and may involve computed tomography, magnetic resonance, contrast-enhanced ultrasound, or intravascular ultrasound. In this narrative review, we aim to discuss the full spectrum of venous disease imaging for both acute and chronic venous thrombotic disease.


Subject(s)
Postthrombotic Syndrome , Venous Thromboembolism , Venous Thrombosis , Humans , Venous Thromboembolism/diagnostic imaging , Veins , Venous Thrombosis/diagnostic imaging , Lower Extremity/blood supply , Chronic Disease , Acute Disease
14.
Cardiovasc Diagn Ther ; 13(1): 133-146, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36864951

ABSTRACT

Background and Objective: Vascular calcification (VC) and resulting vascular disease is one of the major causes of cardiovascular morbidity and mortality in patients with chronic kidney disease (CKD). CKD itself is increasingly recognized as a risk factor for cardiac and peripheral arterial disease (PAD). This paper examines the atherosclerotic plaque composition and specific endovascular considerations in the end stage renal disease (ESRD) patients. The literature was reviewed regarding the current status of medical and interventional management arteriosclerotic disease in patients with CKD. Lastly, three representative cases displaying typical endovascular treatment options are provided. Methods: A literature search was performed in PubMed covering publications up to September 2021 as well as discussion with experts in the field. Key Content and Findings: The high prevalence of atherosclerotic lesions in patients with chronic renal failure and high (re-)stenosis cause problems in the medium and long term as vascular calcium load represents one of the most widely encountered predictors of failure of endovascular treatment of PAD and future cardiovascular events (e.g., coronary calcium score). Patients with CKD also suffer from a greater risk for major vascular adverse events in general and worse revascularization outcomes following peripheral vascular intervention. A correlation between calcium burden and drug-coated balloon (DCB) performance has been established for PAD necessitating the need for different tools to cope with vascular calcium such as endoprosthesis or braided stents. Patients with CKD are at a higher risk of developing contrast-induced nephropathy (CIN). In addition to recommendations such as the administration of intravenous fluids, carbon dioxide (CO2) angiography is one option to potentially provide an effective and safe alternative both to iodine-based contrast media allergy and to the use of iodine-based contrast media in patients with CKD. Conclusions: Management and endovascular procedures of patients with ESRD are complex. In the course of time, new endovascular therapy methods have been developed such as directional atherectomy (DA) and the so-called "pave-and-crack" technique to deal with high vascular calcium burden. Besides interventional therapy, vascular patients with CKD benefit from aggressive medical management.

15.
Neuroimage Clin ; 36: 103213, 2022.
Article in English | MEDLINE | ID: mdl-36270162

ABSTRACT

Spinal diffusion tensor imaging (sDTI) is still a challenging technique for selectively evaluating anatomical areas like the pyramidal tracts (PT), dorsal columns (DC), and anterior horns (AH) in clinical routine and for reliably quantifying white matter anisotropy and diffusivity. In neurodegenerative diseases, the value of sDTI is promising but not yet well understood. The objective of this prospective, single-center study was to evaluate the long fiber tract degeneration within the spinal cord in normal aging (n = 125) and to prove its applicability in pathologic conditions as in patients with molecular genetically confirmed hereditary spastic paraplegias (HSP; n = 40), a prototypical disease of the first motor neuron and in some genetic variants with affection of the dorsal columns. An optimized monopolar Stejskal-Tanner sequence for high-resolution, axial sDTI of the cervical spinal cord at 3.0 T with advanced standardized evaluation methods was developed for a robust DTI value estimation of PT, DC, and AH in both groups. After sDTI measurement at C2, an automatic motion correction and an advanced semi-automatic ROI-based, standardized evaluation of white matter anisotropy and diffusivity was performed to obtain regional diffusivity measures for PT, DC, and AH. Reliable and stable sDTI values were acquired in a healthy population without significant decline between age 20 and 65. Reference values for PT, DC, and AH for fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) were established. In HSP patients, the decline of the long spinal fiber tracts could be demonstrated by diffusivity abnormalities in the pyramidal tracts with significantly reduced PTFA (p < 0.001), elevated PTRD (p = 0.002) and reduced PTMD (p = 0.003) compared to healthy controls. Furthermore, FA was significantly reduced in DCFA (p < 0.001) with no differences in AH. In a genetically homogeneous subgroup of SPG4 patients (n = 12) with affection of the dorsal columns, DCRD significantly correlated with the overall disease severity as measured by the Spastic Paraplegia Rating Scale (SPRS) (r = - 0.713, p = 0.009). With the most extensive sDTI study in vivo to date, we showed that axial sDTI combined with motion correction and advanced data post-processing strategies enables robust measurements and is ready to use, allowing recognition and quantification of disease- and age-related changes of the PT, DC, and AH. These results may also encourage the usage of sDTI in other neurodegenerative diseases with spinal cord involvement to explore its capability as selective biomarkers.


Subject(s)
Diffusion Tensor Imaging , White Matter , Animals , Humans , Young Adult , Adult , Middle Aged , Aged , Diffusion Tensor Imaging/methods , Prospective Studies , White Matter/diagnostic imaging , White Matter/pathology , Anisotropy , Pyramidal Tracts/diagnostic imaging
16.
Article in English | MEDLINE | ID: mdl-34952851

ABSTRACT

INTRODUCTION: Transjugular intrahepatic portosystemic shunt (TIPS) placement is a well-established but technically challenging procedure for the management of sequelae of end-stage liver disease. Performed essentially blindly, traditional fluoroscopically guided TIPS placement requires multiple needle passes and prolonged radiation exposure to achieve successful portal venous access, thus increasing procedure time and the risk of periprocedural complications. Several advanced image-guided portal access techniques, including intracardiac echocardiography (ICE)-guided access, cone-beam CT (CBCT)-guided access and wire-targeting access techniques, can serve as alternatives to traditional CO2 portography-based TIPS creation. METHODS: A literature search was performed on the electronic databases including MEDLINE and Embase, from 2000 to the present to identify all relevant studies. The reference list also included studies identified manually, and studies referenced for other purposes. FINDINGS: The main benefit of these advanced access techniques is that they allow the operator to avoid essentially blind portal punctures, and the ability to visualise the target, thus reducing the number of required needle passes. Research has shown that ICE-guided access can decrease the radiation exposure, procedure time and complication rate in patients undergoing TIPS placement. This technique is particularly useful in patients with challenging portal venous anatomy. However, ICE-guided access requires additional equipment and possibly a second operator. Other studies have shown that CBCT-guided access, when compared with traditional fluoroscopy-guided access, provides superior visualisation of the anatomy with similar amount of radiation exposure and procedure time. The wire-targeting technique, on the other hand, appears to offer reductions in procedure time and radiation exposure by enabling real-time guidance. However, this technique necessitates percutaneous injury to the liver parenchyma in order to place the target wire. CONCLUSION: Advanced portal access techniques have certain advantages over the traditional fluoroscopically guided TIPS access. To date, few studies have compared these advanced guided access options, and further research is required.


Subject(s)
Portasystemic Shunt, Transjugular Intrahepatic , Fluoroscopy/methods , Humans , Portal Vein/surgery , Portasystemic Shunt, Transjugular Intrahepatic/adverse effects , Portasystemic Shunt, Transjugular Intrahepatic/methods , Portography , Punctures/methods
17.
Cardiovasc Intervent Radiol ; 44(9): 1403-1413, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34021375

ABSTRACT

PURPOSE: To evaluate the value of dual-phase parenchymal blood volume (PBV) C-arm mounted cone-beam-CT (CBCT) to enable assessment of radiopaque, doxorubicin-loaded drug-eluting embolics (rDEE) based on the visual degree of embolization, embolic density and residual tumor perfusion as early predictors for tumor recurrence after transarterial chemoembolization (TACE) of hepatocellular carcinoma (HCC). MATERIAL AND METHODS: Thirty patients (50 HCCs) were prospectively enrolled, underwent cross-sectional imaging before and after TACE using 100-300 µm rDEE and had regular follow-up examinations. Directly before and after the TACE procedure, PBV-CBCT was acquired. The response was evaluated and compared to visual degree of embolization (DE) and embolic density (ED) of rDEE deposits, as well as the presence of residual tumor perfusion (RTP) derived from PBV-CBCT. Outcome was assessed by mid-term tumor response applying mRECIST and patient survival after 12 months. RESULTS: RTP was detected in 16 HCCs and correlated negatively with DE (p = .03*) and ED (p = .0009*). The absence of RTP significantly improved lesion-based mid-term response rates regarding complete response (CR, 30/34 (88%) vs 2/16 (12.5%), p = .0002*), lesion-based complete response rate was 75% (21/28) for DE ≥ 50% vs. 50% (11/22) for DE < 50% (p = .08) and 82% (27/33) for ED ≥ 2 vs. 29% for ED < 2 (5/17), p = .005*). Thirteen patients were treated with re-TACE within 12 months, 11 of which had shown RTP. 12-month survival rate was 93%. CONCLUSION: Residual tumor perfusions as assessed by PBV-CBCT during rDEE-TACE proved to be the best parameter to predict mid-term response. "Level of Evidence: Level 3".


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Aged , Aged, 80 and over , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/therapy , Female , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Male , Middle Aged , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/therapy , Neoplasm, Residual/diagnostic imaging , Perfusion , Pharmaceutical Preparations , Treatment Outcome
18.
Invest Radiol ; 54(12): 737-743, 2019 12.
Article in English | MEDLINE | ID: mdl-31206392

ABSTRACT

PURPOSE: The aim of this study was to demonstrate the feasibility of hepatic perfusion imaging using dynamic contrast-enhanced (DCE) golden-angle radial sparse parallel (GRASP) magnetic resonance imaging (MRI) for characterizing liver parenchyma and hepatocellular carcinoma (HCC) before and after transarterial chemoembolization (TACE) as a potential alternative to volume perfusion computed tomography (VPCT). METHODS AND MATERIALS: Between November 2017 and September 2018, 10 patients (male = 8; mean age, 66.5 ± 8.6 years) with HCC were included in this prospective, institutional review board-approved study. All patients underwent DCE GRASP MRI with high spatiotemporal resolution after injection of liver-specific MR contrast agent before and after TACE. In addition, VPCT was acquired before TACE serving as standard of reference. From the dynamic imaging data of DCE MRI and VPCT, perfusion maps (arterial liver perfusion [mL/100 mL/min], portal liver perfusion [mL/100 mL/min], hepatic perfusion index [%]) were calculated using a dual-input maximum slope model and compared with assess perfusion measures, lesion characteristics, and treatment response using Wilcoxon signed-rank test. To evaluate interreader agreement for measurement repeatability, the interclass correlation coefficient (ICC) was calculated. RESULTS: Perfusion maps could be successfully generated from all DCE MRI and VPCT data. The ICC was excellent for all perfusion maps (ICC ≥ 0.88; P ≤ 0.001). Image analyses revealed perfusion parameters for DCE MRI and VPCT within the same absolute range for tumor and liver tissue. Dynamic contrast-enhanced MRI further enabled quantitative assessment of treatment response showing a significant decrease (P ≤ 0.01) of arterial liver perfusion and hepatic perfusion index in the target lesion after TACE. CONCLUSIONS: Dynamic contrast-enhanced GRASP MRI allows for a reliable and robust assessment of hepatic perfusion parameters providing quantitative results comparable to VPCT and enables characterization of HCC before and after TACE, thus posing the potential to serve as an alternative to VPCT.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Contrast Media , Image Enhancement/methods , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Aged , Algorithms , Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic/methods , Feasibility Studies , Female , Humans , Liver/diagnostic imaging , Liver Neoplasms/therapy , Male , Perfusion Imaging/methods , Prospective Studies
19.
J Vasc Interv Radiol ; 30(3): 380-389.e4, 2019 03.
Article in English | MEDLINE | ID: mdl-30819480

ABSTRACT

PURPOSE: To compare different imaging techniques (volume perfusion CT, cone-beam CT, and dynamic gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced dynamic contrast-enhanced MR imaging with golden-angle radial sparse parallel MR imaging) in evaluation of transarterial chemoembolization of hepatocellular carcinoma (HCC) using radiopaque drug-eluting embolics (DEE). MATERIALS AND METHODS: MR imaging and CT phantom investigation of radiopaque DEE was performed. In the clinical portion of the study, 13 patients (22 HCCs) were prospectively enrolled. All patients underwent cross-sectional imaging before and after transarterial chemoembolization using 100-300 µm radiopaque DEE. Qualitative assessment of images using a Likert scale was performed. RESULTS: In the phantom study, CT-related beam-hardening artifacts were markedly visible at a concentration of 12% (v/v) radiopaque DEE; MR imaging demonstrated no significant detectable signal intensity changes. Imaging obtained before transarterial chemoembolization showed no significant difference regarding tumor depiction. Visualization of tumor feeding arteries was significantly improved with volume perfusion CT (P < .001) and cone-beam CT (P = .002) compared with MR imaging. Radiopaque DEE led to significant decrease in tumor depiction (P = .001) and significant increase of beam-hardening artifacts (P = .012) using volume perfusion CT before versus after transarterial chemoembolization. Greater residual arterial tumor enhancement was detected with MR imaging (10 HCCs) compared with volume perfusion CT (8 HCCs) and cone-beam CT (6 HCCs). CONCLUSIONS: Using radiopaque DEE, the imaging modalities provided comparable early treatment assessment. In HCCs with dense accumulation of radiopaque DEE, treatment assessment using volume perfusion CT or cone-beam CT may be impaired owing to resulting beam-hardening artifacts and contrast stasis. Dynamic contrast-enhanced MR imaging may add value in detection of residual arterial tumor enhancement.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic/methods , Cone-Beam Computed Tomography/methods , Doxorubicin/administration & dosage , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Magnetic Resonance Imaging/methods , Perfusion Imaging/methods , Polyvinyl Alcohol/administration & dosage , Aged , Aged, 80 and over , Antibiotics, Antineoplastic/adverse effects , Artifacts , Carcinoma, Hepatocellular/pathology , Chemoembolization, Therapeutic/adverse effects , Cone-Beam Computed Tomography/instrumentation , Contrast Media/administration & dosage , Doxorubicin/adverse effects , Female , Gadolinium DTPA/administration & dosage , Humans , Liver Neoplasms/pathology , Magnetic Resonance Imaging/instrumentation , Male , Microspheres , Middle Aged , Perfusion Imaging/instrumentation , Phantoms, Imaging , Polyvinyl Alcohol/adverse effects , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , Treatment Outcome
20.
J Med Ultrason (2001) ; 46(1): 81-88, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29948475

ABSTRACT

PURPOSE: To investigate whether liver stiffness measured by acoustic radiation force impulse (ARFI) sonoelastography always correlates with the liver perfusion parameters quantified by perfusion CT in patients with known liver cirrhosis. METHODS: Sonoelastography and perfusion CT were performed in 50 patients (mean age 65.5; range 45-87 years) with liver cirrhosis, who were classified according to Child-Pugh into class A (30/50, 60%), B (17/50, 34%), and C (3/50, 6%). For standardized ARFI measurements in the left liver lobe at a depth of 4 cm, a convex 6-MHz probe was used. CT examinations were performed using 80 kV, 100 mAs, and 50 ml of iodinated contrast agent injected at 5 ml/s. Using standardized region-of-interest measurements, we quantified arterial, portal venous, and total liver perfusion. RESULTS: There was a significant linear correlation between tissue stiffness and arterial liver perfusion (p = 0.015), and also when limiting the analysis to patients with histology (p = 0.019). In addition, there was a positive correlation between the total blood supply (arterial + portal-venous liver perfusion) to the liver and tissue stiffness (p = 0.001; with histology, p = 0.027). Shear wave velocity increased with higher Child-Pugh stages (p = 0.013). CONCLUSION: The degree of tissue stiffness in cirrhotic livers correlates expectedly-even if only moderately-with the magnitude of arterial liver perfusion and total liver perfusion. As such, liver elastography remains the leading imaging tool in assessing liver fibrosis.


Subject(s)
Liver Cirrhosis/diagnostic imaging , Aged , Aged, 80 and over , Elasticity , Elasticity Imaging Techniques/methods , Female , Humans , Liver/blood supply , Liver/diagnostic imaging , Liver/physiopathology , Liver Cirrhosis/pathology , Male , Middle Aged , Portal Vein/diagnostic imaging , Portal Vein/physiopathology , Proof of Concept Study , Reproducibility of Results , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL