Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38950165

ABSTRACT

Peatland fires emit organic carbon-rich particulate matter into the atmosphere. Boreal and Arctic peatlands are becoming more vulnerable to wildfires, resulting in a need for better understanding of the emissions of these special fires. Extractable, nonpolar, and low-polar organic aerosol species emitted from laboratory-based boreal and Arctic peat-burning experiments are analyzed by direct-infusion atmospheric pressure photoionization (APPI) ultrahigh-resolution mass spectrometry (UHRMS) and compared to time-resolved APPI UHRMS evolved gas analysis from the thermal analysis of peat under inert nitrogen (pyrolysis) and oxidative atmosphere. The chemical composition is characterized on a molecular level, revealing abundant aromatic compounds that partially contain oxygen, nitrogen, or sulfur and are formed at characteristic temperatures. Two main structural motifs are identified, single core and multicore, and their temperature-dependent formation is assigned to the thermal degradation of the lignocellulose building blocks and other parts of peat.

2.
Environ Sci Technol ; 55(8): 4368-4377, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33769801

ABSTRACT

Black carbon (BC) particles contribute to climate warming by heating the atmosphere and reducing the albedo of snow/ice surfaces. The available Arctic BC deposition records are restricted to the Atlantic and North American sectors, for which previous studies suggest considerable spatial differences in trends. Here, we present first long-term BC deposition and radiocarbon-based source apportionment data from Russia using four lake sediment records from western Arctic Russia, a region influenced by BC emissions from oil and gas production. The records consistently indicate increasing BC fluxes between 1800 and 2014. The radiocarbon analyses suggest mainly (∼70%) biomass sources for BC with fossil fuel contributions peaking around 1960-1990. Backward calculations with the atmospheric transport model FLEXPART show emission source areas and indicate that modeled BC deposition between 1900 and 1999 is largely driven by emission trends. Comparison of observed and modeled data suggests the need to update anthropogenic BC emission inventories for Russia, as these seem to underestimate Russian BC emissions and since 1980s potentially inaccurately portray their trend. Additionally, the observations may indicate underestimation of wildfire emissions in inventories. Reliable information on BC deposition trends and sources is essential for design of efficient and effective policies to limit climate warming.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Arctic Regions , Carbon/analysis , Environmental Monitoring , Russia , Soot/analysis
3.
Environ Sci Technol ; 49(24): 13954-63, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26575216

ABSTRACT

Black carbon (BC) is fine particulate matter produced by the incomplete combustion of biomass and fossil fuels. It has a strong climate warming effect that is amplified in the Arctic. Long-term trends of BC play an important role in assessing the climatic effects of BC and in model validation. However, few historical BC records exist from high latitudes. We present five lake-sediment soot-BC (SBC) records from the Fennoscandian Arctic and compare them with records of spheroidal carbonaceous fly-ash particles (SCPs), another BC component, for ca. the last 120 years. The records show spatial and temporal variation in SBC fluxes. Two northernmost lakes indicate declining values from 1960 to the present, which is consistent with modeled BC deposition and atmospheric measurements in the area. However, two lakes located closer to the Kola Peninsula (Russia) have recorded increasing SBC fluxes from 1970 to the present, which is likely caused by regional industrial emissions. The increasing trend is in agreement with a Svalbard ice-core-BC record. The results suggest that BC deposition in parts of the European Arctic may have increased over the last few decades, and further studies are needed to clarify the spatial extent of the increasing BC values and to ascertain the climatic implications.


Subject(s)
Geologic Sediments/analysis , Soot/analysis , Arctic Regions , Carbon/analysis , Fossil Fuels , Lakes , Particulate Matter , Russia , Spatio-Temporal Analysis , Svalbard
SELECTION OF CITATIONS
SEARCH DETAIL