Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Sci Data ; 11(1): 989, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256479

ABSTRACT

The NEREA (Naples Ecological REsearch for Augmented observatories) initiative aims to establish an augmented observatory in the Gulf of Naples (GoN), designed to advance the understanding of marine ecosystems through a holistic approach. Inspired by the Tara Oceans expedition and building on the scientific legacy of the MareChiara Long-Term Ecological Research (LTER-MC) site, NEREA integrates traditional physical, chemical, and biological measurements with state-of-the-art methodologies such as metabarcoding and metagenomics. Here we present the first 10 months of NEREA data, collected from April 2019 to January 2020, encompassing physico-chemical parameters, plankton biodiversity (e.g., microscopy and flow cytometry), prokaryotic and eukaryotic metabarcoding, a prokaryotic gene catalogue, and a collection of 3818 prokaryotic Metagenome-Assembled Genomes (MAGs). NEREA's efforts produce a significant volume of multifaceted data, which enhances our understanding of marine ecosystems and promotes the development of scientific hypotheses and ideas.


Subject(s)
Ecosystem , Plankton , Metagenome , Biodiversity , Metagenomics
2.
Microbiome ; 12(1): 178, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300575

ABSTRACT

BACKGROUND: Microbial pdu and cob-cbi-hem gene clusters encode the key enzyme glycerol/diol dehydratase (PduCDE), which mediates the transformation of dietary nutrients glycerol and 1,2-propanediol (1,2-PD) to a variety of metabolites, and enzymes for cobalamin synthesis, a co-factor and shared good of microbial communities. It was the aim of this study to relate pdu as a multipurpose functional trait to environmental conditions and microbial community composition. We collected fecal samples from wild animal species living in captivity with different gut physiology and diet (n = 55, in total 104 samples), determined occurrence and diversity of pdu and cob-cbi-hem using a novel approach combining metagenomics with quantification of metabolic and genetic biomarkers, and conducted in vitro fermentations to test for trait-based activity. RESULTS: Fecal levels of the glycerol transformation product 1,3-propanediol (1,3-PD) were higher in hindgut than foregut fermenters. Gene-based analyses indicated that pduC harboring taxa are common feature of captive wild animal fecal microbiota that occur more frequently and at higher abundance in hindgut fermenters. Phylogenetic analysis of genomes reconstructed from metagenomic sequences identified captive wild animal fecal microbiota as taxonomically rich with a total of 4150 species and > 1800 novel species but pointed at only 56 species that at least partially harbored pdu and cbi-cob-hem. While taxonomic diversity was highest in fecal samples of foregut-fermenting herbivores, higher pduC abundance and higher diversity of pdu/cbi-cob-hem related to higher potential for glycerol and 1,2-PD utilization of the less diverse microbiota of hindgut-fermenting carnivores in vitro. CONCLUSION: Our approach combining metabolite and gene biomarker analysis with metagenomics and phenotypic characterization identified Pdu as a common function of fecal microbiota of captive wild animals shared by few taxa and stratified the potential of fecal microbiota for glycerol/1,2-PD utilization and cobalamin synthesis depending on diet and physiology of the host. This trait-based study suggests that the ability to utilize glycerol/1,2-PD is a key function of hindgut-fermenting carnivores, which does not relate to overall community diversity but links to the potential for cobalamin formation. Video Abstract.


Subject(s)
Feces , Fermentation , Gastrointestinal Microbiome , Glycerol , Metagenomics , Animals , Feces/microbiology , Glycerol/metabolism , Metagenomics/methods , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Propylene Glycols/metabolism , Vitamin B 12/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/enzymology , Phylogeny , Animals, Wild/microbiology
3.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428395

ABSTRACT

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Subject(s)
Bacteria , Gastrointestinal Tract , Metagenome , Plasmids , Humans , Bacteria/genetics , Bacteroidetes/genetics , Feces/microbiology , Plasmids/genetics
4.
Microbiome ; 12(1): 65, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539229

ABSTRACT

BACKGROUND: Aerobic anoxygenic phototrophic (AAP) bacteria are heterotrophic bacteria that supply their metabolism with light energy harvested by bacteriochlorophyll-a-containing reaction centers. Despite their substantial contribution to bacterial biomass, microbial food webs, and carbon cycle, their phenology in freshwater lakes remains unknown. Hence, we investigated seasonal variations of AAP abundance and community composition biweekly across 3 years in a temperate, meso-oligotrophic freshwater lake. RESULTS: AAP bacteria displayed a clear seasonal trend with a spring maximum following the bloom of phytoplankton and a secondary maximum in autumn. As the AAP bacteria represent a highly diverse assemblage of species, we followed their seasonal succession using the amplicon sequencing of the pufM marker gene. To enhance the accuracy of the taxonomic assignment, we developed new pufM primers that generate longer amplicons and compiled the currently largest database of pufM genes, comprising 3633 reference sequences spanning all phyla known to contain AAP species. With this novel resource, we demonstrated that the majority of the species appeared during specific phases of the seasonal cycle, with less than 2% of AAP species detected during the whole year. AAP community presented an indigenous freshwater nature characterized by high resilience and heterogenic adaptations to varying conditions of the freshwater environment. CONCLUSIONS: Our findings highlight the substantial contribution of AAP bacteria to the carbon flow and ecological dynamics of lakes and unveil a recurrent and dynamic seasonal succession of the AAP community. By integrating this information with the indicator of primary production (Chlorophyll-a) and existing ecological models, we show that AAP bacteria play a pivotal role in the recycling of dissolved organic matter released during spring phytoplankton bloom. We suggest a potential role of AAP bacteria within the context of the PEG model and their consideration in further ecological models.


Subject(s)
Lakes , Phototrophic Processes , Lakes/microbiology , Bacteria/genetics , Biomass , Bacteria, Aerobic/genetics , Bacteria, Aerobic/metabolism , Phytoplankton/genetics
5.
Nat Commun ; 15(1): 2557, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519488

ABSTRACT

Microbiome engineering - the targeted manipulation of microbial communities - is considered a promising strategy to restore ecosystems, but experimental support and mechanistic understanding are required. Here, we show that bacterial inoculants for soil microbiome engineering may fail to establish because they inadvertently facilitate growth of native resident microbiomes. By generating soil microcosms in presence or absence of standardized soil resident communities, we show how different nutrient availabilities limit outgrowth of focal bacterial inoculants (three Pseudomonads), and how this might be improved by adding an artificial, inoculant-selective nutrient niche. Through random paired interaction assays in agarose micro-beads, we demonstrate that, in addition to direct competition, inoculants lose competitiveness by facilitating growth of resident soil bacteria. Metatranscriptomics experiments with toluene as selective nutrient niche for the inoculant Pseudomonas veronii indicate that this facilitation is due to loss and uptake of excreted metabolites by resident taxa. Generation of selective nutrient niches for inoculants may help to favor their proliferation for the duration of their intended action while limiting their competitive loss.


Subject(s)
Agricultural Inoculants , Microbiota , Soil , Bacteria/genetics , Cell Proliferation , Soil Microbiology
6.
Bioinformatics ; 40(2)2024 02 01.
Article in English | MEDLINE | ID: mdl-38341646

ABSTRACT

MOTIVATION: DNA barcoding has become a powerful tool for assessing the fitness of strains in a variety of studies, including random transposon mutagenesis screens, attenuation of site-directed mutants, and population dynamics of isogenic strain pools. However, the statistical analysis, visualization, and contextualization of the data resulting from such experiments can be complex and require bioinformatic skills. RESULTS: Here, we developed mBARq, a user-friendly tool designed to simplify these steps for diverse experimental setups. The tool is seamlessly integrated with an intuitive web app for interactive data exploration via the STRING and KEGG databases to accelerate scientific discovery. AVAILABILITY AND IMPLEMENTATION: The tool is implemented in Python. The source code is freely available (https://github.com/MicrobiologyETHZ/mbarq) and the web app can be accessed at: https://microbiomics.io/tools/mbarq-app.


Subject(s)
DNA Barcoding, Taxonomic , Software , DNA , Computational Biology
7.
Nucleic Acids Res ; 52(D1): D777-D783, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37897342

ABSTRACT

Meta'omic data on microbial diversity and function accrue exponentially in public repositories, but derived information is often siloed according to data type, study or sampled microbial environment. Here we present SPIRE, a Searchable Planetary-scale mIcrobiome REsource that integrates various consistently processed metagenome-derived microbial data modalities across habitats, geography and phylogeny. SPIRE encompasses 99 146 metagenomic samples from 739 studies covering a wide array of microbial environments and augmented with manually-curated contextual data. Across a total metagenomic assembly of 16 Tbp, SPIRE comprises 35 billion predicted protein sequences and 1.16 million newly constructed metagenome-assembled genomes (MAGs) of medium or high quality. Beyond mapping to the high-quality genome reference provided by proGenomes3 (http://progenomes.embl.de), these novel MAGs form 92 134 novel species-level clusters, the majority of which are unclassified at species level using current tools. SPIRE enables taxonomic profiling of these species clusters via an updated, custom mOTUs database (https://motu-tool.org/) and includes several layers of functional annotation, as well as crosslinks to several (micro-)biological databases. The resource is accessible, searchable and browsable via http://spire.embl.de.


Subject(s)
Databases, Factual , Metagenome , Microbiota , Metagenomics , Microbiota/genetics
8.
Nature ; 626(7998): 377-384, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38109938

ABSTRACT

Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.


Subject(s)
Archaea , Bacteria , Ecosystem , Evolution, Molecular , Genes, Archaeal , Genes, Bacterial , Genomics , Knowledge , Antimicrobial Peptides/genetics , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Biomarkers , Cell Movement/genetics , Colorectal Neoplasms/genetics , Genomics/methods , Genomics/trends , Metagenomics/trends , Multigene Family , Phylogeny , Reproducibility of Results
9.
Microbiol Mol Biol Rev ; 87(4): e0006323, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37947420

ABSTRACT

SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms. While nucleic acid sequencing technologies can chart microbiota composition with high precision, we mostly lack information about the functional roles and interactions of each strain present in a given microbiome. This limits our ability to predict microbiome function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed the N+1/N-1 concept) to enable step-by-step dissection of microbiome assembly and functioning, as well as intervention procedures to introduce or eliminate one particular microbial strain at a time. The N+1/N-1 concept is informed by natural invasion events and selects culturable, genetically accessible microbes with well-annotated genomes to chart their proliferation or decline within defined synthetic and/or complex natural microbiota. This approach enables harnessing classical microbiological and diversity approaches, as well as omics tools and mathematical modeling to decipher the mechanisms underlying N+1/N-1 microbiota outcomes. Application of this concept further provides stepping stones and benchmarks for microbiome structure and function analyses and more complex microbiome intervention strategies.


Subject(s)
Microbiota , Humans , Microbiota/genetics , Dysbiosis
10.
Nat Commun ; 14(1): 3038, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37263999

ABSTRACT

Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera. The telomere DNA lengths of the short-lived, more stress-sensitive Pocillopora spp. colonies were largely determined by seasonal temperature variation, whereas those of the long-lived, more stress-resistant Porites spp. colonies were insensitive to seasonal patterns, but rather influenced by past thermal anomalies. These results reveal marked differences in telomere DNA length regulation between two evolutionary distant coral genera exhibiting specific life-history traits. We propose that environmentally regulated mechanisms of telomere maintenance are linked to organismal performances, a matter of paramount importance considering the effects of climate change on health.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Coral Reefs , Temperature , Seasons , DNA/genetics
11.
Nat Commun ; 14(1): 3039, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264002

ABSTRACT

Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored. Here, we systematically sampled 3 coral morphotypes, 2 fish species, and planktonic communities in 99 reefs from 32 islands across the Pacific Ocean, to assess reef microbiome composition and biogeography. We show a very large richness of reef microorganisms compared to other environments, which extrapolated to all fishes and corals of the Pacific, approximates the current estimated total prokaryotic diversity for the entire Earth. Microbial communities vary among and within the 3 animal biomes (coral, fish, plankton), and geographically. For corals, the cross-ocean patterns of diversity are different from those known for other multicellular organisms. Within each coral morphotype, community composition is always determined by geographic distance first, both at the island and across ocean scale, and then by environment. Our unprecedented sampling effort of coral reef microbiomes, as part of the Tara Pacific expedition, provides new insight into the global microbial diversity, the factors driving their distribution, and the biocomplexity of reef ecosystems.


Subject(s)
Anthozoa , Microbiota , Animals , Coral Reefs , Pacific Ocean , Biodiversity , Fishes , Plankton
12.
Nat Commun ; 14(1): 3037, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264015

ABSTRACT

Health and resilience of the coral holobiont depend on diverse bacterial communities often dominated by key marine symbionts of the Endozoicomonadaceae family. The factors controlling their distribution and their functional diversity remain, however, poorly known. Here, we study the ecology of Endozoicomonadaceae at an ocean basin-scale by sampling specimens from three coral genera (Pocillopora, Porites, Millepora) on 99 reefs from 32 islands across the Pacific Ocean. The analysis of 2447 metabarcoding and 270 metagenomic samples reveals that each coral genus harbored a distinct new species of Endozoicomonadaceae. These species are composed of nine lineages that have distinct biogeographic patterns. The most common one, found in Pocillopora, appears to be a globally distributed symbiont with distinct metabolic capabilities, including the synthesis of amino acids and vitamins not produced by the host. The other lineages are structured partly by the host genetic lineage in Pocillopora and mainly by the geographic location in Porites. Millepora is more rarely associated to Endozoicomonadaceae. Our results show that different coral genera exhibit distinct strategies of host-Endozoicomonadaceae associations that are defined at the bacteria lineage level.


Subject(s)
Anthozoa , Gammaproteobacteria , Animals , Anthozoa/microbiology , Pacific Ocean , Ecology , Bacteria , Coral Reefs
13.
Sci Data ; 10(1): 326, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264047

ABSTRACT

Coral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e. the multipartite assemblages comprising the coral host organism, endosymbiotic dinoflagellates, bacteria, archaea, fungi, and viruses. Tara Pacific is an ambitious project built upon the experience of previous Tara Oceans expeditions, and leveraging state-of-the-art sequencing technologies and analyses to dissect the biodiversity and biocomplexity of the coral holobiont screened across most archipelagos spread throughout the entire Pacific Ocean. Here we detail the Tara Pacific workflow for multi-omics data generation, from sample handling to nucleotide sequence data generation and deposition. This unique multidimensional framework also includes a large amount of concomitant metadata collected side-by-side that provide new assessments of coral reef biodiversity including micro-biodiversity and shape future investigations of coral reef dynamics and their fate in the Anthropocene.


Subject(s)
Anthozoa , Coral Reefs , Animals , Biodiversity , Ecosystem
14.
Commun Biol ; 6(1): 566, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264063

ABSTRACT

Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially Symbiodinium), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease.


Subject(s)
Anthozoa , Dinoflagellida , RNA Viruses , Animals , Dinoflagellida/genetics , Genome , Anthozoa/genetics , RNA Viruses/genetics , Coral Reefs
15.
Microbiome ; 10(1): 212, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36464731

ABSTRACT

BACKGROUND: Taxonomic profiling is a fundamental task in microbiome research that aims to detect and quantify the relative abundance of microorganisms in biological samples. Available methods using shotgun metagenomic data generally depend on the deposition of sequenced and taxonomically annotated genomes, usually from cultures of isolated strains, in reference databases (reference genomes). However, the majority of microorganisms have not been cultured yet. Thus, a substantial fraction of microbial community members remains unaccounted for during taxonomic profiling, particularly in samples from underexplored environments. To address this issue, we developed the mOTU profiler, a tool that enables reference genome-independent species-level profiling of metagenomes. As such, it supports the identification and quantification of both "known" and "unknown" species based on a set of select marker genes. RESULTS: We present mOTUs3, a command line tool that enables the profiling of metagenomes for >33,000 species-level operational taxonomic units. To achieve this, we leveraged the reconstruction of >600,000 draft genomes, most of which are metagenome-assembled genomes (MAGs), from diverse microbiomes, including soil, freshwater systems, and the gastrointestinal tract of ruminants and other animals, which we found to be underrepresented by reference genomes. Overall, two thirds of all species-level taxa lacked a reference genome. The cumulative relative abundance of these newly included taxa was low in well-studied microbiomes, such as the human body sites (6-11%). By contrast, they accounted for substantial proportions (ocean, freshwater, soil: 43-63%) or even the majority (pig, fish, cattle: 60-80%) of the relative abundance across diverse non-human-associated microbiomes. Using community-developed benchmarks and datasets, we found mOTUs3 to be more accurate than other methods and to be more congruent with 16S rRNA gene-based methods for taxonomic profiling. Furthermore, we demonstrate that mOTUs3 increases the resolution of well-known microbial groups into species-level taxa and helps identify new differentially abundant taxa in comparative metagenomic studies. CONCLUSIONS: We developed mOTUs3 to enable accurate species-level profiling of metagenomes. Compared to other methods, it provides a more comprehensive view of prokaryotic community diversity, in particular for currently underexplored microbiomes. To facilitate comparative analyses by the research community, it is released with >11,000 precomputed profiles for publicly available metagenomes and is freely available at: https://github.com/motu-tool/mOTUs . Video Abstract.


Subject(s)
Metagenome , Microbiota , Swine , Cattle , Animals , RNA, Ribosomal, 16S/genetics , Metagenome/genetics , Metagenomics , Microbiota/genetics , Soil
16.
Nature ; 607(7917): 111-118, 2022 07.
Article in English | MEDLINE | ID: mdl-35732736

ABSTRACT

Natural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups1, this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds2,3. However, studying this diversity to identify genomic pathways for the synthesis of such compounds4 and assigning them to their respective hosts remains challenging. The biosynthetic potential of microorganisms in the open ocean remains largely uncharted owing to limitations in the analysis of genome-resolved data at the global scale. Here we investigated the diversity and novelty of biosynthetic gene clusters in the ocean by integrating around 10,000 microbial genomes from cultivated and single cells with more than 25,000 newly reconstructed draft genomes from more than 1,000 seawater samples. These efforts revealed approximately 40,000 putative mostly new biosynthetic gene clusters, several of which were found in previously unsuspected phylogenetic groups. Among these groups, we identified a lineage rich in biosynthetic gene clusters ('Candidatus Eudoremicrobiaceae') that belongs to an uncultivated bacterial phylum and includes some of the most biosynthetically diverse microorganisms in this environment. From these, we characterized the phospeptin and pythonamide pathways, revealing cases of unusual bioactive compound structure and enzymology, respectively. Together, this research demonstrates how microbiomics-driven strategies can enable the investigation of previously undescribed enzymes and natural products in underexplored microbial groups and environments.


Subject(s)
Biosynthetic Pathways , Microbiota , Oceans and Seas , Bacteria/classification , Bacteria/genetics , Biosynthetic Pathways/genetics , Genomics , Microbiota/genetics , Multigene Family/genetics , Phylogeny
17.
Science ; 376(6589): 156-162, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35389782

ABSTRACT

Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.


Subject(s)
Genome, Viral , RNA Viruses , Viruses , Biological Evolution , Ecosystem , Oceans and Seas , Phylogeny , RNA , RNA Viruses/genetics , Virome/genetics , Viruses/genetics
18.
Sci Rep ; 11(1): 21761, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741032

ABSTRACT

Enteric fermentation from ruminants is a primary source of anthropogenic methane emission. This study aims to add another approach for methane mitigation by manipulation of the rumen microbiome. Effects of choline supplementation on methane formation were quantified in vitro using the Rumen Simulation Technique. Supplementing 200 mM of choline chloride or choline bicarbonate reduced methane emissions by 97-100% after 15 days. Associated with the reduction of methane formation, metabolomics analysis revealed high post-treatment concentrations of ethanol, which likely served as a major hydrogen sink. Metagenome sequencing showed that the methanogen community was almost entirely lost, and choline-utilizing bacteria that can produce either lactate, ethanol or formate as hydrogen sinks were enriched. The taxa most strongly associated with methane mitigation were Megasphaera elsdenii and Denitrobacterium detoxificans, both capable of consuming lactate, which is an intermediate product and hydrogen sink. Accordingly, choline metabolism promoted the capability of bacteria to utilize alternative hydrogen sinks leading to a decline of hydrogen as a substrate for methane formation. However, fermentation of fibre and total organic matter could not be fully maintained with choline supplementation, while amino acid deamination and ethanolamine catabolism produced excessive ammonia, which would reduce feed efficiency and adversely affect live animal performance.


Subject(s)
Choline/administration & dosage , Gastrointestinal Microbiome , Lipotropic Agents/administration & dosage , Methane/biosynthesis , Rumen/microbiology , Animals , Cattle , Dietary Supplements
19.
Curr Protoc ; 1(8): e218, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34387940

ABSTRACT

The mOTU profiler, or mOTUs for short, is a software tool that enables the profiling of microbial communities in terms of their taxonomic composition, relative abundance of metabolically active members, and diversity of strain populations. To this end, it maintains a database of single-copy phylogenetic marker gene sequences, which are used as a reference to which short read metagenomic and metatranscriptomic reads are mapped for the identification and quantification of microbial taxa. Here, we describe the most common use cases of the mOTU profiler in two basic protocols. Additional supporting protocols provide information on its installation and in-depth guidance on adjusting its settings for increasing or decreasing the stringency with which taxa are detected and quantified, as well as for customizing the output file format. Guidelines for understanding the profiling results are provided, along with additional information on unique features, methodological details, and the development history of the tool. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Metagenomic and metatranscriptomic mOTU profiling Basic Protocol 2: Metagenomic SNV profiling Support Protocol 1: Installing mOTUs Support Protocol 2: Profiling pipeline-step by step Support Protocol 3: The mOTUs profiling routine using advanced parameters Support Protocol 4: Metagenomic SNV calling: advanced parameters.


Subject(s)
Metagenomics , Microbiota , Humans , Metagenome , Microbiota/genetics , Phylogeny , Software
20.
BMC Genomics ; 22(1): 592, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34348664

ABSTRACT

BACKGROUND: Genetic aberrations in hepatocellular carcinoma (HCC) are well known, but the functional consequences of such aberrations remain poorly understood. RESULTS: Here, we explored the effect of defined genetic changes on the transcriptome, proteome and phosphoproteome in twelve tumors from an mTOR-driven hepatocellular carcinoma mouse model. Using Network-based Integration of multi-omiCS data (NetICS), we detected 74 'mediators' that relay via molecular interactions the effects of genetic and miRNA expression changes. The detected mediators account for the effects of oncogenic mTOR signaling on the transcriptome, proteome and phosphoproteome. We confirmed the dysregulation of the mediators YAP1, GRB2, SIRT1, HDAC4 and LIS1 in human HCC. CONCLUSIONS: This study suggests that targeting pathways such as YAP1 or GRB2 signaling and pathways regulating global histone acetylation could be beneficial in treating HCC with hyperactive mTOR signaling.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Pharmaceutical Preparations , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL