Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Science ; 385(6715): 1327-1331, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39298597

ABSTRACT

Quantum state teleportation is commonly used in designs for large-scale quantum computers. Using Quantinuum's H2 trapped-ion quantum processor, we demonstrate fault-tolerant state teleportation circuits for a quantum error correction code-specifically the Steane code. The circuits use up to 30 qubits at the physical level and employ real-time quantum error correction. We conducted experiments on several variations of logical teleportation circuits using both transversal gates and lattice surgery. We measured the logical process fidelity to be 0.975 ± 0.002 for the transversal teleportation implementation and 0.851 ± 0.009 for the lattice surgery teleportation implementation as well as 0.989 ± 0.002 for an implementation of Knill-style quantum error correction.

2.
Pharmacol Ther ; 257: 108631, 2024 May.
Article in English | MEDLINE | ID: mdl-38467308

ABSTRACT

Mouse models of disease play a pivotal role at all stages of cancer drug development. Cell-line derived subcutaneous tumour models are predominant in early drug discovery, but there is growing recognition of the importance of the more complex orthotopic and metastatic tumour models for understanding both target biology in the correct tissue context, and the impact of the tumour microenvironment and the immune system in responses to treatment. The aim of this review is to highlight the value that orthotopic and metastatic models bring to the study of tumour biology and drug development while pointing out those models that are most likely to be encountered in the literature. Important developments in orthotopic models, such as the increasing use of early passage patient material (PDXs, organoids) and humanised mouse models are discussed, as these approaches have the potential to increase the predictive value of preclinical studies, and ultimately improve the success rate of anticancer drugs in clinical trials.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Mice , Humans , Xenograft Model Antitumor Assays , Immune System , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Disease Models, Animal , Tumor Microenvironment
3.
J Cell Sci ; 135(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-35971826

ABSTRACT

Dysregulation of the ERBB/EGFR signalling pathway causes multiple types of cancer. Accordingly, ADAM17, the primary shedding enzyme that releases and activates ERBB ligands, is tightly regulated. It has recently become clear that iRhom proteins, inactive members of the rhomboid-like superfamily, are regulatory cofactors for ADAM17. Here, we show that oncogenic KRAS mutants target the cytoplasmic domain of iRhom2 (also known as RHBDF2) to induce ADAM17-dependent shedding and the release of ERBB ligands. Activation of ERK1/2 by oncogenic KRAS induces the phosphorylation of iRhom2, recruitment of the phospho-binding 14-3-3 proteins, and consequent ADAM17-dependent shedding of ERBB ligands. In addition, cancer-associated mutations in iRhom2 act as sensitisers in this pathway by further increasing KRAS-induced shedding of ERBB ligands. This mechanism is conserved in lung cancer cells, where iRhom activity is required for tumour xenograft growth. In this context, the activity of oncogenic KRAS is modulated by the iRhom2-dependent release of ERBB ligands, thus placing the cytoplasmic domain of iRhom2 as a central component of a positive feedback loop in lung cancer cells. This article has an associated First Person interview with the first authors of the paper.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , ErbB Receptors/metabolism , Humans , Ligands , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction
4.
Nat Protoc ; 17(9): 2108-2128, 2022 09.
Article in English | MEDLINE | ID: mdl-35859135

ABSTRACT

Tumor-bearing experimental animals are essential for preclinical cancer drug development. A broad range of tumor models is available, with the simplest and most widely used involving a tumor of mouse or human origin growing beneath the skin of a mouse: the subcutaneous tumor model. Here, we outline the different types of in vivo tumor model, including some of their advantages and disadvantages and how they fit into the drug-development process. We then describe in more detail the subcutaneous tumor model and key steps needed to establish it in the laboratory, namely: choosing the mouse strain and tumor cells; cell culture, preparation and injection of tumor cells; determining tumor volume; mouse welfare; and an appropriate experimental end point. The protocol leads to subcutaneous tumor growth usually within 1-3 weeks of cell injection and is suitable for those with experience in tissue culture and mouse experimentation.


Subject(s)
Neoplasms , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Mice
5.
Phys Med Biol ; 67(12)2022 06 08.
Article in English | MEDLINE | ID: mdl-35594854

ABSTRACT

Purpose.To introduce a methodology to predict tissue sparing effects in pulsed ultra-high dose rate radiation exposures which could be included in a dose-effect prediction system or treatment planning system and to illustrate it by using three published experiments.Methods and materials.The proposed system formalises the variability of oxygen levels as an oxygen dose histogram (ODH), which provides an instantaneous oxygen level at a delivered dose. The histogram concept alleviates the need for a mechanistic approach. At each given oxygen level the oxygen fixation concept is used to calculate the change in DNA-damage induction compared to the fully hypoxic case. Using the ODH concept it is possible to estimate the effect even in the case of multiple pulses, partial oxygen depletion, and spatial oxygen depletion. The system is illustrated by applying it to the seminal results by Town (Nat. 1967) on cell cultures and the pre-clinical experiment on cognitive effects by Montay-Gruelet al(2017Radiother. Oncol.124365-9).Results.The proposed system predicts that a possible FLASH-effect depends on the initial oxygenation level in tissue, the total dose delivered, pulse length and pulse repetition rate. The magnitude of the FLASH-effect is the result of a redundant system, in that it will have the same specific value for a different combination of these dependencies. The cell culture data are well represented, while a correlation between the pre-clinical experiments and the calculated values is highly significant (p < 0.01).Conclusions. A system based only on oxygen related effects is able to quantify most of the effects currently observed in FLASH-radiation.


Subject(s)
Hypoxia , Oxygen , Humans , Radiotherapy Dosage
6.
EMBO Mol Med ; 14(3): e14501, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35107878

ABSTRACT

The cells with compromised BRCA1 or BRCA2 (BRCA1/2) function accumulate stalled replication forks, which leads to replication-associated DNA damage and genomic instability, a signature of BRCA1/2-mutated tumours. Targeted therapies against BRCA1/2-mutated tumours exploit this vulnerability by introducing additional DNA lesions. Because homologous recombination (HR) repair is abrogated in the absence of BRCA1 or BRCA2, these lesions are specifically lethal to tumour cells, but not to the healthy tissue. Ligands that bind and stabilise G-quadruplexes (G4s) have recently emerged as a class of compounds that selectively eliminate the cells and tumours lacking BRCA1 or BRCA2. Pyridostatin is a small molecule that binds G4s and is specifically toxic to BRCA1/2-deficient cells in vitro. However, its in vivo potential has not yet been evaluated. Here, we demonstrate that pyridostatin exhibits a high specific activity against BRCA1/2-deficient tumours, including patient-derived xenograft tumours that have acquired PARP inhibitor (PARPi) resistance. Mechanistically, we demonstrate that pyridostatin disrupts replication leading to DNA double-stranded breaks (DSBs) that can be repaired in the absence of BRCA1/2 by canonical non-homologous end joining (C-NHEJ). Consistent with this, chemical inhibitors of DNA-PKcs, a core component of C-NHEJ kinase activity, act synergistically with pyridostatin in eliminating BRCA1/2-deficient cells and tumours. Furthermore, we demonstrate that pyridostatin triggers cGAS/STING-dependent innate immune responses when BRCA1 or BRCA2 is abrogated. Paclitaxel, a drug routinely used in cancer chemotherapy, potentiates the in vivo toxicity of pyridostatin. Overall, our results demonstrate that pyridostatin is a compound suitable for further therapeutic development, alone or in combination with paclitaxel and DNA-PKcs inhibitors, for the benefit of cancer patients carrying BRCA1/2 mutations.


Subject(s)
G-Quadruplexes , Neoplasms , Aminoquinolines/pharmacology , Aminoquinolines/therapeutic use , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein , DNA Repair , Humans , Ligands , Neoplasms/drug therapy , Picolinic Acids
7.
Oncogene ; 41(4): 476-488, 2022 01.
Article in English | MEDLINE | ID: mdl-34773074

ABSTRACT

We recently reported that genetic or pharmacological inhibition of insulin-like growth factor receptor (IGF-1R) slows DNA replication and induces replication stress by downregulating the regulatory subunit RRM2 of ribonucleotide reductase, perturbing deoxynucleotide triphosphate (dNTP) supply. Aiming to exploit this effect in therapy we performed a compound screen in five breast cancer cell lines with IGF neutralising antibody xentuzumab. Inhibitor of checkpoint kinase CHK1 was identified as a top screen hit. Co-inhibition of IGF and CHK1 caused synergistic suppression of cell viability, cell survival and tumour growth in 2D cell culture, 3D spheroid cultures and in vivo. Investigating the mechanism of synthetic lethality, we reveal that CHK1 inhibition in IGF-1R depleted or inhibited cells further downregulated RRM2, reduced dNTP supply and profoundly delayed replication fork progression. These effects resulted in significant accumulation of unreplicated single-stranded DNA and increased cell death, indicative of replication catastrophe. Similar phenotypes were induced by IGF:WEE1 co-inhibition, also via exacerbation of RRM2 downregulation. Exogenous RRM2 expression rescued hallmarks of replication stress induced by co-inhibiting IGF with CHK1 or WEE1, identifying RRM2 as a critical target of the functional IGF:CHK1 and IGF:WEE1 interactions. These data identify novel therapeutic vulnerabilities and may inform future trials of IGF inhibitory drugs.


Subject(s)
Checkpoint Kinase 1/antagonists & inhibitors , High-Throughput Screening Assays/methods , Receptor, IGF Type 1/metabolism , Cell Line, Tumor , Humans , Transfection
8.
Mol Cancer Ther ; 20(9): 1663-1671, 2021 09.
Article in English | MEDLINE | ID: mdl-34158348

ABSTRACT

Radiation-induced DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). Recently, it has been found that chronic tumor hypoxia compromises HR repair of DNA DSBs but activates the NHEJ protein DNAPK. We therefore hypothesized that inhibition of DNAPK can preferentially potentiate the sensitivity of chronically hypoxic cancer cells to radiation through contextual synthetic lethality in vivo In this study, we investigated the impact of DNAPK inhibition by a novel selective DNAPK inhibitor, NU5455, on the repair of radiation-induced DNA DSBs in chronically hypoxic and nonhypoxic cells across a range of xenograft models. We found that NU5455 inhibited DSB repair following radiation in both chronically hypoxic and nonhypoxic tumor cells. Most importantly, the inhibitory effect was more pronounced in chronically hypoxic tumor cells than in nonhypoxic tumor cells. This is the first in vivo study to indicate that DNAPK inhibition may preferentially sensitize chronically hypoxic tumor cells to radiotherapy, suggesting a broader therapeutic window for transient DNAPK inhibition combined with radiotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , DNA Breaks, Double-Stranded , DNA Repair , DNA-Activated Protein Kinase/antagonists & inhibitors , Hypoxia/physiopathology , Lung Neoplasms/drug therapy , Radiation, Ionizing , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Female , Homologous Recombination , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Nature ; 592(7853): 209-213, 2021 04.
Article in English | MEDLINE | ID: mdl-33828318

ABSTRACT

The trapped-ion quantum charge-coupled device (QCCD) proposal1,2 lays out a blueprint for a universal quantum computer that uses mobile ions as qubits. Analogous to a charge-coupled device (CCD) camera, which stores and processes imaging information as movable electrical charges in coupled pixels, a QCCD computer stores quantum information in the internal state of electrically charged ions that are transported between different processing zones using dynamic electric fields. The promise of the QCCD architecture is to maintain the low error rates demonstrated in small trapped-ion experiments3-5 by limiting the quantum interactions to multiple small ion crystals, then physically splitting and rearranging the constituent ions of these crystals into new crystals, where further interactions occur. This approach leverages transport timescales that are fast relative to the coherence times of the qubits, the insensitivity of the qubit states of the ion to the electric fields used for transport, and the low crosstalk afforded by spatially separated crystals. However, engineering a machine capable of executing these operations across multiple interaction zones with low error introduces many difficulties, which have slowed progress in scaling this architecture to larger qubit numbers. Here we use a cryogenic surface trap to integrate all necessary elements of the QCCD architecture-a scalable trap design, parallel interaction zones and fast ion transport-into a programmable trapped-ion quantum computer that has a system performance consistent with the low error rates achieved in the individual ion crystals. We apply this approach to realize a teleported CNOT gate using mid-circuit measurement6, negligible crosstalk error and a quantum volume7 of 26 = 64. These results demonstrate that the QCCD architecture provides a viable path towards high-performance quantum computers.

10.
Mol Ther ; 29(5): 1668-1682, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33845199

ABSTRACT

Cancer gene therapies are usually designed either to express wild-type copies of tumor suppressor genes or to exploit tumor-associated phenotypic changes to endow selective cytotoxicity. However, these approaches become less relevant to cancers that contain many independent mutations, and the situation is made more complex by our increased understanding of clonal evolution of tumors, meaning that different metastases and even regions of the same tumor mass have distinct mutational and phenotypic profiles. In contrast, the relatively genetically stable tumor microenvironment (TME) therefore provides an appealing therapeutic target, particularly since it plays an essential role in promoting cancer growth, immune tolerance, and acquired resistance to many therapies. Recently, a variety of different TME-targeted gene therapy and armed oncolytic strategies have been explored, with particular success observed in strategies targeting the cancer stroma, reducing tumor vasculature, and repolarizing the immunosuppressive microenvironment. Herein, we review the progress of these TME-targeting approaches and try to highlight those showing the greatest promise.


Subject(s)
Genetic Therapy/methods , Neoplasms/therapy , Oncolytic Virotherapy/methods , Humans , Mutation , Neoplasms/genetics , Tumor Microenvironment
11.
Br J Cancer ; 124(11): 1809-1819, 2021 05.
Article in English | MEDLINE | ID: mdl-33742147

ABSTRACT

BACKGROUND: The radiosensitising effect of the poly(ADP-ribose) polymerase inhibitor olaparib on tumours has been reported. However, its effect on normal tissues in combination with radiation has not been well studied. Herein, we investigated the therapeutic index of olaparib combined with hemithoracic radiation in a urethane-induced mouse lung cancer model. METHODS: To assess tolerability, A/J mice were treated with olaparib plus whole thorax radiation (13 Gy), body weight changes were monitored and normal tissue effects were assessed by histology. In anti-tumour (intervention) studies, A/J mice were injected with urethane to induce lung tumours, and were then treated with olaparib alone, left thorax radiation alone or the combination of olaparib plus left thorax radiation at 8 weeks (early intervention) or 18 weeks (late intervention) after urethane injection. Anti-tumour efficacy and normal tissue effects were assessed by visual inspection, magnetic resonance imaging and histology. RESULTS: Enhanced body weight loss and oesophageal toxicity were observed when olaparib was combined with whole thorax but not hemithorax radiation. In both the early and late intervention studies, olaparib increased the anti-tumour effects of hemithoracic irradiation without increasing lung toxicity. CONCLUSIONS: The addition of olaparib increased the therapeutic index of hemithoracic radiation in a mouse model of lung cancer.


Subject(s)
Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Phthalazines/therapeutic use , Piperazines/therapeutic use , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Disease Models, Animal , Female , Lung Neoplasms/pathology , Mice , Phthalazines/pharmacology , Piperazines/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Therapeutic Index , Thorax/radiation effects , Treatment Outcome
12.
Cancer Res ; 81(7): 1667-1680, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33558336

ABSTRACT

Insights into oncogenesis derived from cancer susceptibility loci (SNP) hold the potential to facilitate better cancer management and treatment through precision oncology. However, therapeutic insights have thus far been limited by our current lack of understanding regarding both interactions of these loci with somatic cancer driver mutations and their influence on tumorigenesis. For example, although both germline and somatic genetic variation to the p53 tumor suppressor pathway are known to promote tumorigenesis, little is known about the extent to which such variants cooperate to alter pathway activity. Here we hypothesize that cancer risk-associated germline variants interact with somatic TP53 mutational status to modify cancer risk, progression, and response to therapy. Focusing on a cancer risk SNP (rs78378222) with a well-documented ability to directly influence p53 activity as well as integration of germline datasets relating to cancer susceptibility with tumor data capturing somatically-acquired genetic variation provided supportive evidence for this hypothesis. Integration of germline and somatic genetic data enabled identification of a novel entry point for therapeutic manipulation of p53 activities. A cluster of cancer risk SNPs resulted in increased expression of prosurvival p53 target gene KITLG and attenuation of p53-mediated responses to genotoxic therapies, which were reversed by pharmacologic inhibition of the prosurvival c-KIT signal. Together, our results offer evidence of how cancer susceptibility SNPs can interact with cancer driver genes to affect cancer progression and identify novel combinatorial therapies. SIGNIFICANCE: These results offer evidence of how cancer susceptibility SNPs can interact with cancer driver genes to affect cancer progression and present novel therapeutic targets.


Subject(s)
Drug Resistance, Neoplasm/genetics , Neoplasms/genetics , Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Pharmacological/metabolism , Carcinogenesis/genetics , Case-Control Studies , Cell Line, Tumor , Disease Progression , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Germ-Line Mutation/physiology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mutation, Missense , Neoplasms/diagnosis , Neoplasms/drug therapy , Polymorphism, Single Nucleotide/physiology , Prognosis , Risk Factors , Signal Transduction/genetics , Treatment Outcome
13.
Cancer Res ; 81(8): 2128-2141, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33509941

ABSTRACT

Inhibition of IGF receptor (IGF1R) delays repair of radiation-induced DNA double-strand breaks (DSB), prompting us to investigate whether IGF1R influences endogenous DNA damage. Here we demonstrate that IGF1R inhibition generates endogenous DNA lesions protected by 53BP1 bodies, indicating under-replicated DNA. In cancer cells, inhibition or depletion of IGF1R delayed replication fork progression accompanied by activation of ATR-CHK1 signaling and the intra-S-phase checkpoint. This phenotype reflected unanticipated regulation of global replication by IGF1 mediated via AKT, MEK/ERK, and JUN to influence expression of ribonucleotide reductase (RNR) subunit RRM2. Consequently, inhibition or depletion of IGF1R downregulated RRM2, compromising RNR function and perturbing dNTP supply. The resulting delay in fork progression and hallmarks of replication stress were rescued by RRM2 overexpression, confirming RRM2 as the critical factor through which IGF1 regulates replication. Suspecting existence of a backup pathway protecting from toxic sequelae of replication stress, targeted compound screens in breast cancer cells identified synergy between IGF inhibition and ATM loss. Reciprocal screens of ATM-proficient/deficient fibroblasts identified an IGF1R inhibitor as the top hit. IGF inhibition selectively compromised growth of ATM-null cells and spheroids and caused regression of ATM-null xenografts. This synthetic-lethal effect reflected conversion of single-stranded lesions in IGF-inhibited cells into toxic DSBs upon ATM inhibition. Overall, these data implicate IGF1R in alleviating replication stress, and the reciprocal IGF:ATM codependence we identify provides an approach to exploit this effect in ATM-deficient cancers. SIGNIFICANCE: This study identifies regulation of ribonucleotide reductase function and dNTP supply by IGFs and demonstrates that IGF axis blockade induces replication stress and reciprocal codependence on ATM. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2128/F1.large.jpg.


Subject(s)
DNA Breaks, Double-Stranded , DNA Damage , DNA Replication , Receptor, IGF Type 1/antagonists & inhibitors , Ribonucleoside Diphosphate Reductase/metabolism , Ribonucleotide Reductases/metabolism , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Line, Tumor , Checkpoint Kinase 1/metabolism , DNA Repair , Deoxyribonucleosides/metabolism , Down-Regulation , Fibroblasts , Heterografts , Histones/metabolism , Humans , MAP Kinase Signaling System , MCF-7 Cells , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation , Orphan Nuclear Receptors/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Receptor, IGF Type 1/metabolism , S Phase Cell Cycle Checkpoints , Spheroids, Cellular
14.
Cell Death Differ ; 28(4): 1333-1346, 2021 04.
Article in English | MEDLINE | ID: mdl-33168956

ABSTRACT

T-LAK-originated protein kinase (TOPK) overexpression is a feature of multiple cancers, yet is absent from most phenotypically normal tissues. As such, TOPK expression profiling and the development of TOPK-targeting pharmaceutical agents have raised hopes for its future potential in the development of targeted therapeutics. Results presented in this paper confirm the value of TOPK as a potential target for the treatment of solid tumours, and demonstrate the efficacy of a TOPK inhibitor (OTS964) when used in combination with radiation treatment. Using H460 and Calu-6 lung cancer xenograft models, we show that pharmaceutical inhibition of TOPK potentiates the efficacy of fractionated irradiation. Furthermore, we provide in vitro evidence that TOPK plays a hitherto unknown role during S phase, showing that TOPK depletion increases fork stalling and collapse under conditions of replication stress and exogenous DNA damage. Transient knockdown of TOPK was shown to impair recovery from fork stalling and to increase the formation of replication-associated single-stranded DNA foci in H460 lung cancer cells. We also show that TOPK interacts directly with CHK1 and Cdc25c, two key players in the checkpoint signalling pathway activated after replication fork collapse. This study thus provides novel insights into the mechanism by which TOPK activity supports the survival of cancer cells, facilitating checkpoint signalling in response to replication stress and DNA damage.


Subject(s)
Checkpoint Kinase 1/drug effects , Lung Neoplasms/radiotherapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Radiation Tolerance/drug effects , cdc25 Phosphatases/drug effects , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line, Tumor , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/radiation effects , Female , Humans , Lung Neoplasms/metabolism , Mice , Mice, Nude , Mitogen-Activated Protein Kinase Kinases/genetics , Protein Kinase Inhibitors/pharmacology , Quinolones/pharmacology , Radiation Tolerance/genetics , Signal Transduction , Survival Rate , Xenograft Model Antitumor Assays , cdc25 Phosphatases/genetics , cdc25 Phosphatases/radiation effects
15.
Clin Transl Radiat Oncol ; 25: 61-66, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33072895

ABSTRACT

Lung cancer is the leading cause of cancer mortality worldwide and most patients are unsuitable for 'gold standard' treatment, which is concurrent chemoradiotherapy. CONCORDE is a platform study seeking to establish the toxicity profiles of multiple novel radiosensitisers targeting DNA repair proteins in patients treated with sequential chemoradiotherapy. Time-to-event continual reassessment will facilitate efficient dose-finding.

16.
Int J Cancer ; 147(5): 1474-1484, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32159854

ABSTRACT

Replication stress is a common feature of cancer cells. Ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signalling, a DNA damage repair (DDR) pathway, is activated by regions of single-stranded DNA (ssDNA) that can arise during replication stress. ATR delays cell cycle progression and prevents DNA replication fork collapse, which prohibits cell death and promotes proliferation. Several ATR inhibitors have been developed in order to restrain this protective mechanism in tumours. It is known, however, that despite other effective anticancer chemotherapy treatments targeting DDR pathways, resistance occurs. This begets the need to identify combination treatments to overcome resistance and prevent tumour cell growth. We conducted a drug screen to identify potential synergistic combination treatments by screening an ATR inhibitor (VE822) together with compounds from a bioactive small molecule library. The screen identified adefovir dipivoxil, a reverse transcriptase inhibitor and nucleoside analogue, as a compound that has increased cytotoxicity in the presence of ATR, but not ATM or DNA-dependant protein kinase (DNA-PK) inhibition. Here we demonstrate that adefovir dipivoxil induces DNA replication stress, activates ATR signalling and stalls cells in S phase. This simultaneous induction of replication stress and inhibition of ATR signalling lead to a marked increase in pan-nuclear γH2AX-positive cells, ssDNA accumulation and cell death, indicative of replication catastrophe.


Subject(s)
Adenine/analogs & derivatives , Antineoplastic Agents/pharmacology , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , DNA Replication/drug effects , Organophosphonates/pharmacology , Protein Kinase Inhibitors/pharmacology , Adenine/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Signal Transduction/drug effects
17.
J Clin Invest ; 130(1): 258-271, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31581151

ABSTRACT

Potentiating radiotherapy and chemotherapy by inhibiting DNA damage repair is proposed as a therapeutic strategy to improve outcomes for patients with solid tumors. However, this approach risks enhancing normal tissue toxicity as much as tumor toxicity, thereby limiting its translational impact. Using NU5455, a newly identified highly selective oral inhibitor of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity, we found that it was indeed possible to preferentially augment the effect of targeted radiotherapy on human orthotopic lung tumors without influencing acute DNA damage or a late radiation-induced toxicity (fibrosis) to normal mouse lung. Furthermore, while NU5455 administration increased both the efficacy and the toxicity of a parenterally administered topoisomerase inhibitor, it enhanced the activity of doxorubicin released locally in liver tumor xenografts without inducing any adverse effect. This strategy is particularly relevant to hepatocellular cancer, which is treated clinically with localized drug-eluting beads and for which DNA-PKcs activity is reported to confer resistance to treatment. We conclude that transient pharmacological inhibition of DNA-PKcs activity is effective and tolerable when combined with localized DNA-damaging therapies and thus has promising clinical potential.


Subject(s)
Carcinoma, Hepatocellular , DNA-Activated Protein Kinase/antagonists & inhibitors , Liver Neoplasms, Experimental , Neoplasm Proteins/antagonists & inhibitors , Protein Kinase Inhibitors , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/pathology , DNA-Activated Protein Kinase/metabolism , Doxorubicin/pharmacology , Humans , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/enzymology , Liver Neoplasms, Experimental/pathology , MCF-7 Cells , Mice , Neoplasm Proteins/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays
18.
Cancer Biol Med ; 16(2): 234-246, 2019 May.
Article in English | MEDLINE | ID: mdl-31516745

ABSTRACT

OBJECTIVE: Patients with BRAF-mutant colorectal cancer (CRC) have a poor prognosis. Molecular status is not currently used to select which drug to use in combination with radiotherapy. Our aim was to identify drugs that radiosensitise CRC cells with known BRAF status. METHODS: We screened 298 oncological drugs with and without ionising radiation in colorectal cancer cells isogenic for BRAF. Hits from rank product analysis were validated in a 16-cell line panel of human CRC cell lines, using clonogenic survival assays and xenograft models in vivo. RESULTS: Most consistently identified hits were drugs targeting cell growth/proliferation or DNA damage repair. The most effective class of drugs that radiosensitised wild-type and mutant cell lines was PARP inhibitors. In clonogenic survival assays, talazoparib produced a radiation enhancement ratio of 1.9 in DLD1 (BRAF-wildtype) cells and 1.8 in RKO (BRAF V600E) cells. In DLD1 xenografts, talazoparib significantly increased the inhibitory effect of radiation on tumour growth (P ≤ 0.01). CONCLUSIONS: Our method for screening large drug libraries for radiosensitisation has identified PARP inhibitors as promising radiosensitisers of colorectal cancer cells with wild-type and mutant BRAF backgrounds.

19.
EMBO J ; 38(13): e100532, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31268606

ABSTRACT

Lung cancer remains the leading cause of cancer-related death due to poor treatment responses and resistance arising from tumour heterogeneity. Here, we show that adverse prognosis associated with epigenetic silencing of the tumour suppressor RASSF1A is due to increased deposition of extracellular matrix (ECM), tumour stiffness and metastatic dissemination in vitro and in vivo. We find that lung cancer cells with RASSF1A promoter methylation display constitutive nuclear YAP1 accumulation and expression of prolyl 4-hydroxylase alpha-2 (P4HA2) which increases collagen deposition. Furthermore, we identify that elevated collagen creates a stiff ECM which in turn triggers cancer stem-like programming and metastatic dissemination in vivo. Re-expression of RASSF1A or inhibition of P4HA2 activity reverses these effects and increases markers of lung differentiation (TTF-1 and Mucin 5B). Our study identifies RASSF1A as a clinical biomarker associated with mechanical properties of ECM which increases the levels of cancer stemness and risk of metastatic progression in lung adenocarcinoma. Moreover, we highlight P4HA2 as a potential target for uncoupling ECM signals that support cancer stemness.


Subject(s)
Adenocarcinoma of Lung/pathology , DNA Methylation , Lung Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Tumor Suppressor Proteins/genetics , Up-Regulation , Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Animals , Cell Line, Tumor , Disease Progression , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Prolyl Hydroxylases/metabolism , Promoter Regions, Genetic , Transcription Factors/metabolism , YAP-Signaling Proteins
20.
EMBO Mol Med ; 11(7): e9982, 2019 07.
Article in English | MEDLINE | ID: mdl-31273933

ABSTRACT

Due to compromised homologous recombination (HR) repair, BRCA1- and BRCA2-mutated tumours accumulate DNA damage and genomic rearrangements conducive of tumour progression. To identify drugs that target specifically BRCA2-deficient cells, we screened a chemical library containing compounds in clinical use. The top hit was chlorambucil, a bifunctional alkylating agent used for the treatment of chronic lymphocytic leukaemia (CLL). We establish that chlorambucil is specifically toxic to BRCA1/2-deficient cells, including olaparib-resistant and cisplatin-resistant ones, suggesting the potential clinical use of chlorambucil against disease which has become resistant to these drugs. Additionally, chlorambucil eradicates BRCA2-deficient xenografts and inhibits growth of olaparib-resistant patient-derived tumour xenografts (PDTXs). We demonstrate that chlorambucil inflicts replication-associated DNA double-strand breaks (DSBs), similarly to cisplatin, and we identify ATR, FANCD2 and the SNM1A nuclease as determinants of sensitivity to both drugs. Importantly, chlorambucil is substantially less toxic to normal cells and tissues in vitro and in vivo relative to cisplatin. Because chlorambucil and cisplatin are equally effective inhibitors of BRCA2-compromised tumours, our results indicate that chlorambucil has a higher therapeutic index than cisplatin in targeting BRCA-deficient tumours.


Subject(s)
BRCA1 Protein/deficiency , BRCA2 Protein/deficiency , Chlorambucil/pharmacology , Drug Delivery Systems , Drug Resistance, Neoplasm/drug effects , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Peroxisome Proliferator-Activated Receptors/antagonists & inhibitors , Phthalazines/pharmacology , Piperazines/pharmacology , Animals , Cell Line, Tumor , Cricetinae , Drug Resistance, Neoplasm/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Male , Mice , Mice, SCID , Peroxisome Proliferator-Activated Receptors/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL