Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13282, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858416

ABSTRACT

Recent research has emphasized the role of macrophage-secreted factors on skeletal muscle metabolism. We studied Sargassum Serratifolium ethanol extract (ESS) in countering lipopolysaccharide (LPS)-induced changes in the macrophage transcriptome and their impact on skeletal muscle. Macrophage-conditioned medium (MCM) from LPS-treated macrophages (LPS-MCM) and ESS-treated macrophages (ESS-MCM) affected C2C12 myotube cells. LPS-MCM upregulated muscle atrophy genes and reduced glucose uptake, while ESS-MCM reversed these effects. RNA sequencing revealed changes in the immune system and cytokine transport pathways in ESS-treated macrophages. Protein analysis in ESS-MCM showed reduced levels of key muscle atrophy-related proteins, TNF-α, IL-6, IL-1, and GDF-15. These proteins play crucial roles in muscle function. These findings highlight the intricate relationship between the macrophage transcriptome and their secreted factors in either impairing or enhancing skeletal muscle function. ESS treatment has the potential to reduce macrophage-derived cytokines, preserving skeletal muscle function.


Subject(s)
Macrophages , Muscular Atrophy , Plant Extracts , Sargassum , Sargassum/chemistry , Macrophages/metabolism , Macrophages/drug effects , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Transcriptome , Lipopolysaccharides , Cytokines/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Cell Line , Culture Media, Conditioned/pharmacology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects
2.
Sci Rep ; 14(1): 12874, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38834629

ABSTRACT

Atopic dermatitis is a chronic complex inflammatory skin disorder that requires sustainable treatment methods due to the limited efficacy of conventional therapies. Sargassum serratifolium, an algal species with diverse bioactive substances, is investigated in this study for its potential benefits as a therapeutic agent for atopic dermatitis. RNA sequencing of LPS-stimulated macrophages treated with ethanolic extract of Sargassum serratifolium (ESS) revealed its ability to inhibit a broad range of inflammation-related signaling, which was proven in RAW 264.7 and HaCaT cells. In DNCB-induced BALB/c or HR-1 mice, ESS treatment improved symptoms of atopic dermatitis within the skin, along with histological improvements such as reduced epidermal thickness and infiltration of mast cells. ESS showed a tendency to improve serum IgE levels and inflammation-related cytokine changes, while also improving the mRNA expression levels of Chi3l3, Ccr1, and Fcεr1a genes in the skin. Additionally, ESS compounds (sargachromanol (SCM), sargaquinoic acid (SQA), and sargahydroquinoic acid (SHQA)) mitigated inflammatory responses in LPS-treated RAW264.7 macrophages. In summary, ESS has an anti-inflammatory effect and improves atopic dermatitis, ESS may be applied as a therapeutics for atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Dinitrochlorobenzene , Disease Models, Animal , Mice, Inbred BALB C , Sargassum , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/pathology , Sargassum/chemistry , Mice , RAW 264.7 Cells , Humans , Ethanol/chemistry , Plant Extracts/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Skin/drug effects , Skin/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Immunoglobulin E/blood , Cytokines/metabolism
3.
Planta Med ; 90(1): 25-37, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37848042

ABSTRACT

This study aims to explore the anti-inflammatory mechanisms of sargachromenol in both RAW 264.7 cells and lipopolysaccharide (LPS)-treated mice, as previous reports have suggested that sargachromenol possesses anti-aging, anti-inflammatory, antioxidant, and neuroprotective properties. Although the precise mechanism behind its anti-inflammatory activity remains unclear, pretreatment with sargachromenol effectively reduced the production of nitric oxide, prostaglandin E2, and interleukin (IL)-1ß in LPS-stimulated RAW 264.7 cells by inhibiting cyclooxygenase-2. Moreover, sargachromenol inhibited the activation of nuclear factor-κB (NF-κB) by preventing the degradation of the inhibitor of κB-α (IκB-α) and inhibiting protein kinase B (Akt) phosphorylation in LPS-stimulated cells. We also found that sargachromenol induced the production of heme oxygenase-1 (HO-1) by activating the nuclear transcription factor erythroid-2-related factor 2 (Nrf2). In LPS-treated mice, oral administration of sargachromenol effectively reduced the levels of IL-1ß, IL-6, and tumor necrosis factor-α (TNF-α) in the serum, suggesting its ability to suppress the production of inflammatory mediators by inhibiting the Akt/NF-κB pathway and upregulating the Nrf2/HO-1 pathway.


Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Mice , NF-kappa B/metabolism , RAW 264.7 Cells , Lipopolysaccharides/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , NF-E2-Related Factor 2/metabolism , Anti-Inflammatory Agents/pharmacology , Heme Oxygenase-1/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Cyclooxygenase 2/metabolism
4.
J Microbiol Biotechnol ; 34(2): 270-279, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38044678

ABSTRACT

Macrophages are versatile immune cells that play crucial roles in tissue repair, immune defense, and the regulation of immune responses. In the context of skeletal muscle, they are vital for maintaining muscle homeostasis but macrophage-induced chronic inflammation can lead to muscle dysfunction, resulting in skeletal muscle atrophy characterized by reduced muscle mass and impaired insulin regulation and glucose uptake. Although the involvement of macrophage-secreted factors in inflammation-induced muscle atrophy is well-established, the precise intracellular signaling pathways and secretion factors affecting skeletal muscle homeostasis require further investigation. This study aimed to explore the regulation of macrophage-secreted factors and their impact on muscle atrophy and glucose metabolism. By employing RNA sequencing (RNA-seq) and proteome array, we uncovered that factors secreted by lipopolysaccharide (LPS)-stimulated macrophages upregulated markers of muscle atrophy and pro-inflammatory cytokines, while concurrently reducing glucose uptake in muscle cells. The RNA-seq analysis identified alterations in gene expression patterns associated with immune system pathways and nutrient metabolism. The utilization of gene ontology (GO) analysis and proteome array with macrophage-conditioned media revealed the involvement of macrophage-secreted cytokines and chemokines associated with muscle atrophy. These findings offer valuable insights into the regulatory mechanisms of macrophage-secreted factors and their contributions to muscle-related diseases.


Subject(s)
Glucose Intolerance , Lipopolysaccharides , Humans , Lipopolysaccharides/pharmacology , Glucose Intolerance/metabolism , Proteome , Macrophages/metabolism , Cytokines/metabolism , Inflammation/metabolism , Muscular Atrophy , Muscle, Skeletal/metabolism , Glucose/metabolism
5.
Int J Mol Sci ; 24(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37511225

ABSTRACT

Insulin resistance is a crucial factor in the development of type 2 diabetes mellitus (T2DM) and other metabolic disorders. Skeletal muscle, the body's largest insulin-responsive tissue, plays a significant role in the pathogenesis of T2DM due to defects in insulin signaling. Recently, there has been growing evidence that macrophages, immune cells essential for tissue homeostasis and injury response, also contribute to the development of skeletal muscle insulin resistance. This review aims to summarize the current understanding of the role of macrophages in skeletal muscle insulin resistance. Firstly, it provides an overview of the different macrophage populations present in skeletal muscle and their specific functions in the development of insulin resistance. Secondly, it examines the underlying mechanisms by which macrophages promote or alleviate insulin resistance in skeletal muscle, including inflammation, oxidative stress, and altered metabolism. Lastly, the review discusses potential therapeutic strategies targeting macrophages to improve skeletal muscle insulin sensitivity and metabolic health.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Insulin , Humans , Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Macrophages/metabolism , Muscle, Skeletal/metabolism
6.
Mar Drugs ; 20(8)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36005543

ABSTRACT

Seaweeds are receiving much attention as a rich source of bioactive compounds with cosmeceutical potential. Recent studies have revealed that Sargassum spp., a genus of brown algae in the family Sargassaceae, has multiple functions in preventing and improving skin aging. Sargassum spp. contains many bioactive compounds, such as fucoidan, fucoxanthin, terpenoids, flavonoids, and meroterpenoids. These Sargassum spp. extracts and derivative compounds have excellent potential for skincare, as they exhibit skin health-promoting properties, including antioxidants, anti-inflammation, whitening, skin barrier repair, and moisturizing. Therefore, searching for bioactive compounds in marine resources such as Sargassum spp. could be an attractive approach to preventing and improving skin aging. The current review focused on the various biological abilities of Sargassum extracts or derived compounds for anti-skin aging.


Subject(s)
Phaeophyceae , Sargassum , Seaweed , Skin Aging , Antioxidants/pharmacology
7.
Foods ; 11(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35267320

ABSTRACT

Glucocorticoid excess is a critical factor contributing to muscle atrophy. Both endogenous and exogenous glucocorticoids negatively affect the preservation of muscle mass and function. To date, the most effective intervention to prevent muscle atrophy is to apply a mechanical load in the form of resistance exercise. However, glucocorticoid-induced skeletal muscle atrophy easily causes fatigue in daily physical activities, such as climbing stairs and walking at a brisk pace, and reduces body movements to cause a decreased ability to perform physical activity. Therefore, providing adequate nutrients in these circumstances is a key factor in limiting muscle wasting and improving muscle mass recovery. The present review will provide an up-to-date review of the effects of various nutrients, including amino acids such as branched-chain amino acids (BCAAs) and ß-hydroxy ß-methylbutyrate (HMB), fatty acids such as omega-3, and vitamins and their derivates on the prevention and improvement of glucocorticoid-induced muscle atrophy.

8.
Food Chem ; 383: 132277, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35168045

ABSTRACT

Although Galla rhois has been used as a traditional medicine in Asian countries, there was no application of it in anti-browning food additives. Here, we tested whether Galla rhois inhibits apple juice browning. Apple juice browning was blocked at 250-1000 µg/ml of Galla rhois for 16 days but the effect of vitamin C did not last until a day. In vitro assays showed that the antioxidant capacity of Galla rhois was stronger than that of vitamin C. Further analysis by UPLC-MS/MS identified 17 phytochemicals containing gallotannin derivatives. Docking simulation and polyphenol oxidase activity assay indicate that the mechanisms underlying Galla rhois-mediated inhibition of the enzymatic browning include but are not limited to the combined effects of multiple compounds including galloylglucose- and gallate-derivates. Although marketability and long-term toxicity of Galla rhois should be tested, it may be applied as a food additive to elevate food quality.


Subject(s)
Malus , Ascorbic Acid , Biological Products , Catechol Oxidase/metabolism , Chromatography, Liquid , Food Additives/pharmacology , Malus/chemistry , Tandem Mass Spectrometry , Water
9.
Foods ; 12(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36613338

ABSTRACT

Brassinin is a phytoalexin abundant in plants, especially in cabbage, and has been reported to act as an anti-cancer and anti-inflammatory agent. However, limited studies are available to elucidate the functionalities of brassinin. Here, we tested the effects of brassinin on melanogenesis using cell-free and cell-based biochemical analysis and docking simulation. Cell-free experiments exhibited that brassinin has antioxidant and anti-tyrosinase activities. When applied to B16F10 cells stimulated with a melanogenesis inducer α-MSH, brassinin pretreatment significantly reduced melanin accumulation and cellular tyrosinase activity. Docking simulation indicates that the docking score of brassinin to the binding pocket of tyrosinase is better than that of kojic acid or arbutin, anti-melanogenic positive controls, indicating that brassinin inhibits melanogenesis at least partially by binding to and inactivating tyrosinase. In addition, qPCR results showed that brassinin reduced tyrosinase mRNA levels. Together, these results suggest that brassinin exerts anti-melanogenesis effects by inhibiting both the activity and mRNA expression levels of tyrosinase. Therefore, our study showed that brassinin has the potential to be used in pharmaceutical or cosmetic products for depigmentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...