Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Europace ; 26(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38788213

ABSTRACT

AIMS: Human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCM) could be a helpful tool to study the physiology and diseases of the human atrium. To fulfil this expectation, the electrophysiology of hiPSC-aCM should closely resemble the situation in the human atrium. Data on the contribution of the slowly activating delayed rectifier currents (IKs) to repolarization are lacking for both human atrium and hiPSC-aCM. METHODS AND RESULTS: Human atrial tissues were obtained from patients with sinus rhythm (SR) or atrial fibrillation (AF). Currents were measured in human atrial cardiomyocytes (aCM) and compared with hiPSC-aCM and used to model IKs contribution to action potential (AP) shape. Action potential was recorded by sharp microelectrodes. HMR-1556 (1 µM) was used to identify IKs and to estimate IKs contribution to repolarization. Less than 50% of hiPSC-aCM and aCM possessed IKs. Frequency of occurrence, current densities, activation/deactivation kinetics, and voltage dependency of IKs did not differ significantly between hiPSC-aCM and aCM, neither in SR nor AF. ß-Adrenoceptor stimulation with isoprenaline did not increase IKs neither in aCM nor in hiPSC-aCM. In tissue from SR, block of IKs with HMR-1556 did not lengthen the action potential duration, even when repolarization reserve was reduced by block of the ultra-rapid repolarizing current with 4-aminopyridine or the rapidly activating delayed rectifier potassium outward current with E-4031. CONCLUSION: I Ks exists in hiPSC-aCM with biophysics not different from aCM. As in adult human atrium (SR and AF), IKs does not appear to relevantly contribute to repolarization in hiPSC-aCM.


Subject(s)
Action Potentials , Atrial Fibrillation , Delayed Rectifier Potassium Channels , Heart Atria , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Myocytes, Cardiac/physiology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Induced Pluripotent Stem Cells/metabolism , Heart Atria/physiopathology , Delayed Rectifier Potassium Channels/metabolism , Atrial Fibrillation/physiopathology , Atrial Fibrillation/metabolism , Female , Cells, Cultured , Male , Middle Aged , Kinetics , Aged , Cell Differentiation , Models, Cardiovascular , Potassium Channel Blockers/pharmacology
3.
Stem Cell Reports ; 18(11): 2096-2107, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37922915

ABSTRACT

Retinoic acid (RA) induces an atrial phenotype in human induced pluripotent stem cells (hiPSCs), but expression of atrium-selective currents such as the ultrarapid (IKur) and acetylcholine-stimulated K+ current is variable and less than in the adult human atrium. We suspected methodological issues and systematically investigated the concentration dependency of RA. RA treatment increased IKur concentration dependently from 1.1 ± 0.54 pA/pF (0 RA) to 3.8 ± 1.1, 5.8 ± 2.5, and 12.2 ± 4.3 at 0.01, 0.1, and 1 µM, respectively. Only 1 µM RA induced enough IKur to fully reproduce human atrial action potential (AP) shape and a robust shortening of APs upon carbachol. We found that sterile filtration caused substantial loss of RA. We conclude that 1 µM RA seems to be necessary and sufficient to induce a full atrial AP shape in hiPSC-CM in EHT format. RA concentrations are prone to methodological issues and may profoundly impact the success of atrial differentiation.


Subject(s)
Atrial Fibrillation , Induced Pluripotent Stem Cells , Humans , Action Potentials , Induced Pluripotent Stem Cells/metabolism , Atrial Fibrillation/metabolism , Tretinoin/pharmacology , Tretinoin/metabolism , Heart Atria , Phenotype , Myocytes, Cardiac
4.
Pflugers Arch ; 475(12): 1463-1477, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863976

ABSTRACT

Optogenetic actuators are rapidly advancing tools used to control physiology in excitable cells, such as neurons and cardiomyocytes. In neuroscience, these tools have been used to either excite or inhibit neuronal activity. Cell type-targeted actuators have allowed to study the function of distinct cell populations. Whereas the first described cation channelrhodopsins allowed to excite specific neuronal cell populations, anion channelrhodopsins were used to inhibit neuronal activity. To allow for simultaneous excitation and inhibition, opsin combinations with low spectral overlap were introduced. BiPOLES (Bidirectional Pair of Opsins for Light-induced Excitation and Silencing) is a bidirectional optogenetic tool consisting of the anion channel Guillardia theta anion-conducting channelrhodopsin 2 (GtACR2 with a blue excitation spectrum and the red-shifted cation channel Chrimson. Here, we studied the effects of BiPOLES activation in cardiomyocytes. For this, we knocked in BiPOLES into the adeno-associated virus integration site 1 (AAVS1) locus of human-induced pluripotent stem cells (hiPSC), subjected these to cardiac differentiation, and generated BiPOLES expressing engineered heart tissue (EHT) for physiological characterization. Continuous light application activating either GtACR2 or Chrimson resulted in cardiomyocyte depolarization and thus stopped EHT contractility. In contrast, short light pulses, with red as well as with blue light, triggered action potentials (AP) up to a rate of 240 bpm. In summary, we demonstrate that cation, as well as anion channelrhodopsins, can be used to activate stem cell-derived cardiomyocytes with pulsed photostimulation but also to silence cardiac contractility with prolonged photostimulation.


Subject(s)
Myocytes, Cardiac , Optogenetics , Humans , Optogenetics/methods , Channelrhodopsins/genetics , Myocytes, Cardiac/metabolism , Anions/metabolism , Cations
5.
Front Pharmacol ; 13: 979300, 2022.
Article in English | MEDLINE | ID: mdl-36353481

ABSTRACT

Background: Diabetes mellitus leads to endothelial dysfunction and accumulation of oxygen radicals. Sulfasalazine-induced Nrf2 activation reduces oxidative stress in vessels. Thus, in the present study, we investigated the effects of sulfasalazine on endothelial dysfunction induced by high glucose. We also ascribed the underlying mechanism involved in glucose-induced endothelial dysfunction. Methods: For this experiment we used 80 Wistar Albino rats thoracic aorta to calculate the dose response curve of noradrenaline and acetylcholine. Vessels were incubated in normal and high glucose for 2 h. To investigate glucose and sulfasalazine effects the vessels of the high glucose group were pre-treated with sulfasalazine (300 mM), JNK inhibitor (SP600125), and ERK inhibitor (U0126) for 30 min. The dose response curve was calculated through organ bath. The eNOS, TAS, TOS, and HO-1 levels were estimated by commercially available ELISA kits. Results: In the high glucose group, the Emax for contraction was significantly higher (p < 0.001), and Emax for relaxation was lower than that of control. These functional changes were parallel with the low levels of eNOS (p < 0.05). High glucose vessel treated with sulfasalazine showed low Emax value for contraction (p < 0.001) however, the Emax for relaxation was significantly high (p < 0.001) when compared to high glucose group. In the JNK group, Emax for contraction and relaxation was inhibited (p < 0.001) compared to sulfasalazine treated vessels. HO-1 enzyme levels were significantly low (p < 0.01) with sulfasalazine but higher with ERK inhibitor (p < 0.05). Conclusion: High glucose induced endothelial dysfunction and sulfasalazine reduced damage in high glucose vessels by activating eNOS, antioxidant effect through HO-1 enzymes and particularly inducing Nrf2 via the ERK and JNK pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...