Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Front Cell Dev Biol ; 8: 624181, 2020.
Article En | MEDLINE | ID: mdl-33585465

Down Syndrome (DS) Cell Adhesion Molecules (DSCAMs) are transmembrane proteins of the immunoglobulin superfamily. Human DSCAM is located within the DS critical region of chromosome 21 (duplicated in Down Syndrome patients), and mutations or copy-number variations of this gene have also been associated to Fragile X syndrome, intellectual disability, autism, and bipolar disorder. The DSCAM paralogue DSCAM-like 1 (DSCAML1) maps to chromosome 11q23, implicated in the development of Jacobsen and Tourette syndromes. Additionally, a spontaneous mouse DSCAM deletion leads to motor coordination defects and seizures. Previous research has revealed roles for DSCAMs in several neurodevelopmental processes, including synaptogenesis, dendritic self-avoidance, cell sorting, axon growth and branching. However, their functions in embryonic mammalian forebrain development have yet to be completely elucidated. In this study, we revealed highly dynamic spatiotemporal patterns of Dscam and Dscaml1 expression in definite cortical layers of the embryonic mouse brain, as well as in structures and ganglionic eminence-derived neural populations within the embryonic subpallium. However, an in-depth histological analysis of cortical development, ventral forebrain morphogenesis, cortical interneuron migration, and cortical-subcortical connectivity formation processes in Dscam and Dscaml1 knockout mice (Dscam del17 and Dscaml1 GT ) at several embryonic stages indicated that constitutive loss of Dscam and Dscaml1 does not affect these developmental events in a significant manner. Given that several Dscam- and Dscaml1-linked neurodevelopmental disorders are associated to chromosomal region duplication events, we furthermore sought to examine the neurodevelopmental effects of Dscam and Dscaml1 gain of function (GOF). In vitro, ex vivo, and in vivo GOF negatively impacted neural migration processes important to cortical development, and affected the morphology of maturing neurons. Overall, these findings contribute to existing knowledge on the molecular etiology of human neurodevelopmental disorders by elucidating how dosage variations of genes encoding adhesive cues can disrupt cell-cell or cell-environment interactions crucial for neuronal migration.

2.
EMBO J ; 38(6)2019 03 15.
Article En | MEDLINE | ID: mdl-30745319

DSCAM and DSCAML1 are immunoglobulin and cell adhesion-type receptors serving important neurodevelopmental functions including control of axon growth, branching, neurite self-avoidance, and neuronal cell death. The signal transduction mechanisms or effectors of DSCAM receptors, however, remain poorly characterized. We used a human ORFeome library to perform a high-throughput screen in mammalian cells and identified novel cytoplasmic signaling effector candidates including the Down syndrome kinase Dyrk1a, STAT3, USP21, and SH2D2A. Unexpectedly, we also found that the intracellular domains (ICDs) of DSCAM and DSCAML1 specifically and directly interact with IPO5, a nuclear import protein of the importin beta family, via a conserved nuclear localization signal. The DSCAM ICD is released by γ-secretase-dependent cleavage, and both the DSCAM and DSCAML1 ICDs efficiently translocate to the nucleus. Furthermore, RNA sequencing confirms that expression of the DSCAM as well as the DSCAML1 ICDs alone can profoundly alter the expression of genes associated with neuronal differentiation and apoptosis, as well as synapse formation and function. Gain-of-function experiments using primary cortical neurons show that increasing the levels of either the DSCAM or the DSCAML1 ICD leads to an impairment of neurite growth. Strikingly, increased expression of either full-length DSCAM or the DSCAM ICD, but not the DSCAML1 ICD, significantly decreases synapse numbers in primary hippocampal neurons. Taken together, we identified a novel membrane-to-nucleus signaling mechanism by which DSCAM receptors can alter the expression of regulators of neuronal differentiation and synapse formation and function. Considering that chromosomal duplications lead to increased DSCAM expression in trisomy 21, our findings may help uncover novel mechanisms contributing to intellectual disability in Down syndrome.


Active Transport, Cell Nucleus , Cell Adhesion Molecules/metabolism , Cell Nucleus/metabolism , Neurites/physiology , Synapses/physiology , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Cell Adhesion , Cell Adhesion Molecules/genetics , Cell Nucleus/genetics , HEK293 Cells , Hippocampus/metabolism , Humans , Mice , Mice, Inbred C57BL , Neurogenesis , Neurons/metabolism , Protein Domains , Protein Interaction Domains and Motifs , beta Karyopherins/genetics , beta Karyopherins/metabolism
...