Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Int Arch Med ; 7: 49, 2014.
Article in English | MEDLINE | ID: mdl-25838842

ABSTRACT

The human brain is a system consisting of various interconnected neural networks, with functional specialization coexisting with functional integration occurring both; temporally and spatially at many levels. The current study ranked and compared fast and slow participants in processing information by assessing latency and amplitude of early and late Event-Related Potential (ERP) components, including P200, N200, Premotor Potential (PMP) and P300. In addition, the Reaction Time (RT) of participants was compared and related to the respective ERP components. For this purpose, twenty right-handed and healthy individuals were subjected to a classical ERP "Oddball" paradigm. Principal Component Analysis (PCA) and Discriminant Function analyses (DFA) used PRE components and the Reaction Time (RT) to classify individuals. Our results indicate that latencies of P200 (O2 electrode), N200 (O2), PMP (C3) and P300 (Pz) components are significantly reduced in the group of fast responding participants. In addition, the P200 amplitude is significantly increased in the group of fast responding participants. Based on these findings, we suggest that the ERP is able to detect even minimal impairments, in the processing of somatosensory information and cognitive and motor stages. Hence, the study of ERP might also be capable of assessing sensorimotor dysfunctions in healthy old-aged people and in neuropsychiatric patients (suffering from dementia, Parkinson's disease, and other neurological disorders).

2.
Article in English | MEDLINE | ID: mdl-24278088

ABSTRACT

OBJECTIVES: Social anxiety disorder (SAD) is a common and debilitating anxiety disorders. However, few studies had been dedicated to the neurobiology underlying SAD until the last decade. Rates of non-responders to standard methods of treatment remain unsatisfactorily high of approximately 25%, including SAD. Advances in our understanding of SAD could lead to new treatment strategies. A potential non invasive therapeutic option is repetitive transcranial magnetic stimulation (rTMS). Thus, we reported two cases of SAD treated with rTMS Methods: The bibliographical search used Pubmed/Medline, ISI Web of Knowledge and Scielo databases. The terms chosen for the search were: anxiety disorders, neuroimaging, repetitive transcranial magnetic stimulation. RESULTS: In most of the studies conducted on anxiety disorders, except SAD, the right prefrontal cortex (PFC), more specifically dorsolateral PFC was stimulated, with marked results when applying high-rTMS compared with studies stimulating the opposite side. However, according to the "valence hypothesis", anxiety disorders might be characterized by an interhemispheric imbalance associated with increased right-hemispheric activity. With regard to the two cases treated with rTMS, we found a decrease in BDI, BAI and LSAS scores from baseline to follow-up. CONCLUSION: We hypothesize that the application of low-rTMS over the right medial PFC (mPFC; the main structure involved in SAD circuitry) combined with high-rTMS over the left mPFC, for at least 4 weeks on consecutive weekdays, may induce a balance in brain activity, opening an attractive therapeutic option for the treatment of SAD.

3.
Neurosci Lett ; 523(2): 148-53, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22771570

ABSTRACT

INTRODUCTION: The saccadic paradigm has been used to investigate specific cortical networks involving attention. The behavioral and electrophysiological investigations of the SEM contribute significantly to the understanding of attentive patterns presented of neurological and psychiatric disorders and sports performance. OBJECTIVE: The current study aimed to investigate absolute alpha power changes in sensorimotor brain regions and the frontal eye fields during the execution of a saccadic task. METHODS: Twelve healthy volunteers (mean age: 26.25; SD: ±4.13) performed a saccadic task while the electroencephalographic signal was simultaneously recorded for the cerebral cortex electrodes. The participants were instructed to follow the LEDs with their eyes, being submitted to two different task conditions: a fixed pattern versus a random pattern. RESULTS: We found a moment main effect for the C3, C4, F3 and F4 electrodes and a condition main effect for the F3 electrode. We also found interaction between factor conditions and frontal electrodes. CONCLUSIONS: We conclude that absolute alpha power in the left frontal cortex discriminates the execution of the two stimulus presentation patterns during SEM.


Subject(s)
Frontal Lobe/physiology , Saccades , Adult , Alpha Rhythm , Attention , Female , Functional Laterality , Humans , Male , Motor Cortex/physiology , Somatosensory Cortex/physiology
4.
J Neurol Sci ; 312(1-2): 62-7, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-21880332

ABSTRACT

This study aimed at analyzing the relationship between slow- and fast-alpha asymmetry within frontal cortex and the planning, execution and voluntary control of saccadic eye movements (SEM), and quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 12 healthy participants performing a fixed (i.e., memory-driven) and a random SEM (i.e., stimulus-driven) condition. We find main effects for SEM condition in slow- and fast-alpha asymmetry at electrodes F3-F4, which are located over premotor cortex, specifically a negative asymmetry between conditions. When analyzing electrodes F7-F8, which are located over prefrontal cortex, we found a main effect for condition in slow-alpha asymmetry, particularly a positive asymmetry between conditions. In conclusion, the present approach supports the association of slow- and fast-alpha bands with the planning and preparation of SEM, and the specific role of these sub-bands for both, the attention network and the coordination and integration of sensory information with a (oculo)-motor response.


Subject(s)
Alpha Rhythm/physiology , Attention/physiology , Memory/physiology , Motor Cortex/physiology , Prefrontal Cortex/physiology , Saccades/physiology , Adult , Female , Humans , Male , Young Adult
5.
Brain Res Bull ; 87(1): 103-8, 2012 Jan 04.
Article in English | MEDLINE | ID: mdl-22056992

ABSTRACT

The saccadic paradigm has been used to investigate specific cortical networks involving visuospatial attention. We examined whether asymmetry in theta and beta band differentiates the role of the hemispheres during the execution of two different prosacadic conditions: a fixed condition, where the stimulus was presented at the same location; and a random condition, where the stimulus was unpredictable. Twelve healthy volunteers (3 male; mean age: 26.25) performed the task while their brain activity pattern was recorded using quantitative electroencephalography. We did not find any significant difference for beta, slow- and fast-alpha frequencies for the pairs of electrodes analyzed. The results for theta band showed a superiority of the left hemisphere in the frontal region when responding to the random condition on the right, which is related to the planning and selection of responses, and also a greater activation of the right hemisphere during the random condition, in the occipital region, related to the identification and recognition of patterns. These results indicate that asymmetries in the premotor area and the occipital cortex differentiate memory- and stimulus-driven tasks.


Subject(s)
Electroencephalography , Memory/physiology , Motor Cortex/physiology , Occipital Lobe/physiology , Psychomotor Performance/physiology , Adult , Attention/physiology , Female , Humans , Male , Saccades/physiology , Young Adult
6.
CNS Neurol Disord Drug Targets ; 10(5): 610-20, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21631403

ABSTRACT

Unlike for depression, only few studies are available today investigating the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) for anxiety disorders. This review aims to provide information on the current research approaches and main findings regarding the therapeutic use of rTMS in the context of various anxiety disorders. Although positive results have frequently been reported in both open and randomized controlled studies, our review of all identified studies indicates that at present no conclusive evidence of the efficacy of rTMS for the treatment for anxiety disorders is provided. Several treatment parameters have been used, making the interpretation of the results difficult. Moreover, sham-controlled research has often been unable to distinguish between response to rTMS and sham treatment. However, there is a limitation in the rTMS methods that likely impacts only the superficial cortical layers. It is not possible to directly stimulate more distant cortical areas, and also subcortical areas, relevant to the pathogenesis of anxiety disorders, though such effects in subcortical areas are thought to be indirect, via trans-synaptic connections. We thus recommend further studies to clearly determine the role of rTMS in the treatment of anxiety disorders. Key advances in combining TMS with neuroimaging technology may aid in such future developments.


Subject(s)
Anxiety Disorders/therapy , Transcranial Magnetic Stimulation/methods , Animals , Anxiety Disorders/physiopathology , Clinical Trials as Topic , Disease Models, Animal , Humans , Treatment Outcome
7.
Rev Neurosci ; 21(6): 451-68, 2010.
Article in English | MEDLINE | ID: mdl-21438193

ABSTRACT

Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally 'locked in' their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCI) can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BCI, the main advances in communication, motor control restoration and the downregulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to downregulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BCI) related to clinical neurorehabilitation of severely limited patients will generate viable clinical applications in the near future.


Subject(s)
Brain/physiology , Central Nervous System Diseases/pathology , Central Nervous System Diseases/rehabilitation , Communication Aids for Disabled , Electroencephalography/methods , User-Computer Interface , Humans
SELECTION OF CITATIONS
SEARCH DETAIL