Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 126: 111259, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37992446

ABSTRACT

Multiple studies in the literature have demonstrated that synthetic compounds containing heterocyclic rings possess a reparative potential against acute and chronic inflammation. In the present study, two novel thiosemicarbazone derivatives based on l-ethyl-6-(thiophen-2-yl)indoline-2,3-dione with different phenyl substituted thiosemicarbazides were synthesized by condensation reaction and the structures of proposed target compounds (KP-2 and KP-5) were confirmed by UV-VIS, FTIR, 1H-NMR and 13C-NMR. In-vitro anti-inflammatory behavior of KP-2 and KP-5 was confirmed by bovine serum albumin (BSA) and ovine serum albumin (OSA) analysis. Acute and chronic anti-inflammatory potential of synthesized compounds were evaluated by using carrageenan and complete Freund's adjuvant (CFA) as inflammation-inducing agents, respectively. Inhibition of pro-inflammatory mediators and prevention of protein denaturation owing to synchronization of more electronegative flouro-groups substituted on phenyl rings along with heterocyclic indoline ring provides anti-inflammatory effects and are corroborated by radiological, histopathological analysis. Additional support was provided through density functional theory (DFT) and molecular docking. KP-5 exhibited excellent lead-likeness based on its physicochemical parameters, making it a viable drug candidate. The synthesized compounds also showed promising ADMET properties, enhancing their potential as therapeutic agents. These findings emphasize the pivotal role of new compounds for drug design and development.


Subject(s)
Thiosemicarbazones , Animals , Sheep , Humans , Molecular Docking Simulation , Structure-Activity Relationship , Thiosemicarbazones/pharmacology , Thiosemicarbazones/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Carrageenan , Molecular Structure , Edema/chemically induced , Edema/drug therapy , Cyclooxygenase 2 Inhibitors/pharmacology
2.
Chemosphere ; 338: 139531, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37459929

ABSTRACT

Dyes and microbes are the main sources of water pollution and their treatment with titanium doped cobalt ferrite nanoparticles (CoTixFe2-xO4 NPs) is highly challenging due to the recombination ability of their electron-hole pairs which could be mitigated by making their composite with graphene oxide (GO). In the present study, titanium doped cobalt ferrite was fabricated on GO (CoTi0.2Fe1.8O4/GO NC) via the facile ultrasonication method and its confirmation was done by various analytical studies. Homogeneous dispersion of spherical CoTi0.2Fe1.8O4 NPs on the GO surface was realized by SEM analysis. Excellent crystallinity was corroborated by XRD while a Zeta Potential value -21.52 mV depicted exceptional stability. The photocatalytic power of CoTi0.2Fe1.8O/GO NC against Congo Red (CR) dye showed 91% degradation efficiency after 120 min visible light irradiation under optimum conditions of pH 9 and dye concentration 1 mg L-1 which was reasonably higher as compared to bare CoTi0.2Fe1.8O NPs (78% degradation efficiency). The improved photocatalytic performance is accredited to its narrow bandgap value (1.07 eV) and enhanced charge separation as indicated by the Tauc plot and Photoluminescence analysis, respectively. Additionally, CoTi0.2Fe1.8O/GO NC could be readily regenerated and reused five times with only ∼2% performance loss. Meanwhile, MICs of CoTi0.2Fe1.8O4/GO NC against P. aeruginosa and S. aureus were 0.046 and 0.093 mg mL-1 while MBCs were 0.093 and 0.187 mg mL-1, respectively. Thereby, optimized NC can open new avenues for the degradation of dyes from polluted water besides acting as a promising antimicrobial agent by rupturing the cell walls of pathogens.


Subject(s)
Nanocomposites , Titanium , Titanium/radiation effects , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Coloring Agents , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...