Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38697935

ABSTRACT

cis-(+)-12-Oxo-phytodienoic acid (cis-OPDA) is a significant plant oxylipin, known as a biosynthetic precursor of plant hormone jasmonoyl-L-isoleucine (JA-Ile), and a bioactive substance in plant environmental stresses. A recent study showed that a plant monooxygenase a plant dioxygenase, Jasmonate Induced Dioxygenase 1 (JID1), converts cis-OPDA into an unidentified metabolite termed "modified-OPDA (mo-OPDA)" in Arabidopsis thaliana. Here, using UPLC-MS/MS experiment, the chemical identity of "mo-OPDA" was demonstrated and identified as a conjugate between cis-OPDA and 2-mercaptoethanol (cis-OPDA-2ME), an artifact produced by Michael addition during the JID1 digestion of cis-OPDA. However, previous reports demonstrated a decreased accumulation of cis-OPDA in the JID1-OE line, suggesting the existence of an unknown JID1-mediated mechanism regulating the level of cis-OPDA in A. thaliana.

2.
Phytochemistry ; 223: 114141, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750708

ABSTRACT

(3R,7S)-Jasmonoyl-L-isoleucine (JA-Ile) is a plant hormone that regulates plant defense responses and other physiological functions. The mechanism of attenuation of JA-Ile signaling in the plant body is essential because prolonged JA-Ile signaling can be detrimental to plant survival. In Arabidopsis thaliana, the cytochrome P450 monooxygenases, CYP94B1/B3/C1, inactivate JA-Ile by converting it into 12-hydroxy-jasmonoyl-L-isoleucine (12-OH-JA-Ile), and CYP94C1 converts 12-OH-JA-Ile into 12-carboxy-jasmonoyl-L-isoleucine (12-COOH-JA-Ile). In the present study, we aimed to identify the cytochrome P450 monooxygenases involved in the catabolic pathway of JA-Ile in tomato leaves. Based on a gene expression screening of SlCYP94 subfamily monooxygenases using qPCR and the time-course of JA-Ile catabolism, we identified SlCYP94B18 and SlCYP94B19 expressed in tomato leaves as candidate monooxygenases catalyzing the two-step catabolism of JA-Ile. An in vitro enzymatic assay using a yeast expression system revealed that these enzymes efficiently converted JA-Ile to 12-OH-JA-Ile, and then to 12-COOH-JA-Ile. SlCYP94B18 and SlCYP94B19 also catalyzed the oxidative catabolism of several JA-amino acid conjugates (JA-AAs), JA-Leu and JA-Val, in tomatoes. These results suggest that SlCYP94B18 and SlCYP94B19 plays a role in the two-step oxidation of JA-AAs, suggesting their broad involvement in regulating jasmonate signaling in tomatoes. Our results contribute to a deeper understanding of jasmonate signaling in tomatoes and may help to improve tomato cultivation and quality.


Subject(s)
Cyclopentanes , Cytochrome P-450 Enzyme System , Oxylipins , Plant Leaves , Solanum lycopersicum , Solanum lycopersicum/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Leaves/metabolism , Cytochrome P-450 Enzyme System/metabolism , Isoleucine/metabolism , Isoleucine/analogs & derivatives , Mixed Function Oxygenases/metabolism , Arabidopsis/metabolism
3.
Front Sports Act Living ; 6: 1323598, 2024.
Article in English | MEDLINE | ID: mdl-38596640

ABSTRACT

Background: This study aimed to determine changes in the muscle and tendon stiffness of the thigh and lower leg muscle-tendon units during the early follicular and early luteal phases, and check for possible relations between muscle and tendon stiffness in each phase. Methods: The sample consisted of 15 female university students with regular menstrual cycles. The basal body temperature method, ovulation kit, and salivary estradiol concentration measurement were used to estimate the early follicular and early luteal phases. A portable digital palpation device measured muscle-tendon stiffness in the early follicular and early luteal phases. The measurement sites were the rectus femoris (RF), vastus medialis (VM), patellar tendon (PT), medial head of gastrocnemius muscle, soleus muscle, and Achilles tendon. Results: No statistically significant differences in the thigh and lower leg muscle-tendon unit stiffness were seen between the early follicular and early luteal phases. Significant positive correlations were found between the stiffness of the RF and PT (r = 0.608, p = 0.016) and between the VM and PT (r = 0.737, p = 0.002) during the early luteal phase. Conclusion: The present results suggest that the stiffness of leg muscle-tendon units of the anterior thigh and posterior lower leg do not change between the early follicular and early luteal phases and that tendons may be stiffer in those women who have stiffer anterior thigh muscles during the early luteal phase.

5.
Intern Med ; 63(3): 353-357, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37344435

ABSTRACT

Objective Sodium-glucose cotransporter 2 (SGLT2) inhibitors, which are hypoglycemic agents, have been shown to be cardioprotective through a variety of mechanisms, and the effect of lowering uric acid (UA) levels may be one of the mechanisms. In the present retrospective study, we investigated the changes in serum UA levels in patients with chronic kidney disease (CKD) treated with SGLT2 inhibitors. Methods We included 31 patients with CKD who were newly started on dapagliflozin for renal protection and evaluated trends in various parameters, including serum UA levels and UA excretion from urine. Results The patients' median age was 71 years old, 20 patients were men, 7 patients had diabetes, and the median estimated glomerular filtration rate was 33.9 mL/min/1.73 m2 (CKD stage 3: 21 cases, stage 4: 10 cases). The differences in UA and fractional excretion of UA after three weeks and three months of prescription showed significantly decreased UA values and an increased fractional excretion of UA. Conclusion Our findings suggest that dapagliflozin can lower serum UA levels via increased UA excretion, even in patients with advanced CKD.


Subject(s)
Benzhydryl Compounds , Glucosides , Renal Insufficiency, Chronic , Uric Acid , Male , Humans , Aged , Female , Retrospective Studies , Kidney , Glomerular Filtration Rate
6.
BMC Neurosci ; 24(1): 67, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38097940

ABSTRACT

BACKGROUND: The behavioral photosensitivity of animals could be quantified via the optomotor response (OMR), for example, and the luminous efficiency function (the range of visible light) should largely rely on the repertoire and expression of light-absorbing proteins in the retina, i.e., the opsins. In fact, the OMR under red light was suppressed in medaka lacking the red (long-wavelength sensitive [LWS]) opsin. RESULTS: We investigated the ultraviolet (UV)- or blue-light sensitivity of medaka lacking the violet (short-wavelength sensitive 1 [SWS1]) and blue (SWS2) opsins. The sws1/sws2 double or sws1/sws2/lws triple mutants were as viable as the wild type. The remaining green (rhodopsin 2 [RH2]) or red opsins were not upregulated. Interestingly, the OMR of the double or triple mutants was equivalent or even increased under UV or blue light (λ = 350, 365, or 450 nm), which demonstrated that the rotating stripes (i.e., changes in luminance) could fully be recognized under UV light using RH2 alone. The OMR test using dichromatic stripes projected onto an RGB display consistently showed that the presence or absence of SWS1 and SWS2 did not affect the equiluminant conditions. CONCLUSIONS: RH2 and LWS, but not SWS1 and SWS2, should predominantly contribute to the postreceptoral processes leading to the OMR or, possibly, to luminance detection in general, as the medium-wavelength-sensitive and LWS cones, but not the SWS cones, are responsible for luminance detection in humans.


Subject(s)
Oryzias , Ultraviolet Rays , Animals , Humans , Oryzias/metabolism , Opsins/genetics , Opsins/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Phylogeny
7.
BMC Musculoskelet Disord ; 24(1): 631, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537571

ABSTRACT

BACKGROUND: The purpose of this study was to clarify the attachment types of the tibialis anterior tendon (TAT) in Japanese fixed cadavers and to determine the attachment site area in three dimensions. METHODS: We examined 100 feet from 50 Japanese cadavers. The TAT was classified according to differences in the number of fiber bundles as: Type I, with one fiber bundle; Type II, with two fiber bundles; and Type III, with three fiber bundles. The attachment site area of the TAT was measured using a three-dimensional scanner. RESULTS: Cases were Type II in 95% and Type III in 5%, with no cases of Type I identified. In Type II, mean attachment site areas were 85.2 ± 18.2 mm2 for the medial cuneiform bone (MCB) and 72.4 ± 19.0 mm2 for the first metatarsal bone (1 MB), showing a significantly larger area for MCB than for 1 MB. CONCLUSIONS: These findings suggest the possibility of ethnic differences in TAT attachment types and suggest that TAT attachments in Japanese individuals are highly likely to be Type II, with rare cases of Type III. Accurate measurement of attachment site areas is possible with appropriate three-dimensional measurements.


Subject(s)
Muscle, Skeletal , Tendons , Humans , Ankle , Foot , Cadaver
8.
Plant J ; 115(3): 709-723, 2023 08.
Article in English | MEDLINE | ID: mdl-37095639

ABSTRACT

The oxylipin plant hormone (3R,7S)-jasmonoyl-l-isoleucine [or (+)-7-iso-jasmonoyl-l-isoleucine, JA-Ile] is widely recognized as a plant defense hormone against pathogens and chewing insects. The metabolism of JA-Ile into 12-OH-JA-Ile and 12-COOH-JA-Ile is the central mechanism for the inactivation of JA signaling. Recently, 12-OH-JA-Ile was reported to function as a ligand for the JA-Ile co-receptor COI1-JAZ. However, in previous studies, '12-OH-JA-Ile' used was a mixture of four stereoisomers, the naturally occurring cis-isomer (3R,7S)-12-OH-JA-Ile and the trans-isomer (3R,7R)-12-OH-JA-Ile, and the unnatural cis-isomer (3S,7R)-12-OH-JA-Ile and the trans-isomer (3S,7S)-12-OH-JA-Ile. Thus, the genuine bioactive form of 12-OH-JA-Ile has not yet been identified. In the present study, we prepared pure stereoisomers of 12-OH-JA-Ile and identified (3R,7S)-12-OH-JA-Ile as the naturally occurring bioactive form of 12-OH-JA-Ile and found that it binds to COI1-JAZ9 as effectively as (3R,7S)-JA-Ile. In addition, we revealed that the unnatural trans-isomer (3S,7S)-12-OH-JA-l-Ile functions as another bioactive isomer. The pure (3R,7S)-12-OH-JA-Ile causes partial JA-responsive gene expression without affecting the expression of JAZ8/10, which is involved in the negative feedback regulation of JA-signaling. Thus, (3R,7S)-12-OH-JA-Ile could cause weak and sustainable expression of certain JA-responsive genes until the catabolism of (3R,7S)-12-OH-JA-Ile into (3R,7S)-12-COOH-JA-Ile occurs. The use of chemically pure (3R,7S)-12-OH-JA-Ile confirmed the genuine biological activities of '12-OH-JA-Ile' by excluding the possible effects of other stereoisomers. A chemical supply of pure (3R,7S)-12-OH-JA-Ile with an exact bioactivity profile will enable further detailed studies of the unique role of 12-OH-JA-Ile in planta.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Isoleucine , Oxylipins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Stereoisomerism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant
9.
Sci Rep ; 11(1): 13612, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193940

ABSTRACT

(+)-7-iso-Jasmonoyl-L-isoleucine (JA-Ile) is a lipid-derived phytohormone implicated in plant development, reproduction, and defense in response to pathogens and herbivorous insects. All these effects are instigated by the perception of JA-Ile by the COI1-JAZ co-receptor in the plant body, which in Arabidopsis thaliana is profoundly influenced by the short JAZ degron sequence (V/L)P(Q/I)AR(R/K) of the JAZ protein. Here, we report that SlJAZ-SlCOI1, the COI1-JAZ co-receptor found in the tomato plant, relies on the extended JAZ degron sequence (V/L)P(Q/I)AR(R/K)XSLX instead of the canonical JAZ degron. This finding illuminates our understanding of the mechanism of ligand perception by JA-Ile in this plant, and will inform both efforts to improve it by genetic modification of the SlCOI1-SlJAZ co-receptor, and the development of the synthetic agonists/antagonists.


Subject(s)
Cyclopentanes , Isoleucine/analogs & derivatives , Plant Proteins , Repressor Proteins , Solanum lycopersicum , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Cyclopentanes/metabolism , Isoleucine/genetics , Isoleucine/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...