Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ ; 12: e17600, 2024.
Article in English | MEDLINE | ID: mdl-38948201

ABSTRACT

Combining ability status of the inbred lines is crucial information for hybrid breeding program. Diallel or line × tester mating designs are frequently used to evaluate the combining ability. In the current study a modified diallel model was used, wherein the Griffing's combining ability effects were further partitioned to understand the effects due to maternal and reciprocal. To do this, eight parental lines of maize were crossed in full diallel method and the generated hybrids along with parents were phenotyped. The field data on the quantitative traits was analyzed using both Griffing's and the modified model to determine how well the parents' and the F1 hybrids combined. For each of the traits, a sizable reciprocal and maternal variance was observed. The number of kernel rows per cob variable had a ratio of additive variance to dominance variance greater than one. All other traits including grain yield had a ratio close to zero, suggesting that non-additive gene action was primarily responsible for the genetic control of most of the traits. The narrow sense heritability was low to moderate for majority of the variables, except for number of kernel rows per cob. With the help of the improved model, it was possible to choose superior parents and cross-parent pairings with accuracy. Based on the modified general combining ability effects and maternal effects, the parental line P5 was recognized as a potential female parent and P7 as a good male parent for grain yield and yield-attributing characteristics. The cross combination of P8×P1 had the highest specific combining ability effect on grain yield. P5×P6 cross had the highest reciprocal effect. The correlation analysis implies that the Griffing's general combining ability effects and specific combining ability effects were found to be less efficient in predicting F1 performance as compared to the modified model.


Subject(s)
Plant Breeding , Zea mays , Zea mays/genetics , Plant Breeding/methods , Phenotype , Models, Genetic , Maternal Inheritance/genetics , Hybridization, Genetic
2.
PeerJ ; 11: e16134, 2023.
Article in English | MEDLINE | ID: mdl-38144181

ABSTRACT

The success of developing prominent hybrids directly depends on the selection of parents with good combining ability which can transfer desirable genes with additive effects to their progeny. The data of 42 hybrids generated using 7 × 7 full diallel design; their seven parents along with three check hybrids were subjected to combining ability analysis from the experiment that was carried out during rainy season 2019. The analysis of variance showed significant general combining ability, and specific combining ability mean sum of squares for all the thirteen characters studied. It is obvious from the results that three lines (SC Sel 2, SC Sel 1 and SC Sel 3) showed high overall general combining ability status, suggesting these lines as good general combiners across traits. Eighteen hybrids had high overall specific combining ability status, while nearly 52% (22 hybrids), 57% (24 hybrids) and 47% (20 hybrids) of crosses showed high overall mid-parent, better-parent and standard heterosis. The unique superiority of crosses involving high overall general combiner parent in the crosses highlighted the importance of using such parents to realize high heterotic crosses. A non-linear relationship between high overall specific combining ability status and heterotic status of hybrids was noticed. The probability of obtaining a cross with high standard heterosis was more with employing parents with high general combining ability status.


Subject(s)
Hybrid Vigor , Zea mays , Hybrid Vigor/genetics , Zea mays/genetics , Phenotype , Vegetables , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL