Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet Eng Biotechnol ; 16(2): 253-258, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30733732

ABSTRACT

Marine environments are substantially untapped source for the isolation of bacteria with the capacity to produce various extracellular hydrolytic enzymes, which have important ecological roles and promising biotechnological applications. Hydrolases constitute a class of enzymes widely distributed in nature from bacteria to higher eukaryotes. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. A number of marine hydrolases have been described, including amylases, lipases and proteases, which are being used extensively for biotechnological applications. The present study was carried out to isolate marine bacteria from continental slope sediments of the eastern Arabian Sea and explore their biotechnological potential. Among the 119 isolates screened, producers of amylases (15%), caseinases (40%), cellulases (40%), gelatinases (60%), lipases (26%), ligninases (33%), phytase (11%) and Malachite Green dye degraders (16%) were detected. Phylogenetic analysis based on 16S rRNA gene sequencing showed that predominant marine sediment bacteria possessing more than four enzymatic activities belonged to the phyla Firmicutes and Proteobacteria, was assigned to the genera Bacillus, Planococcus, Staphylococcus, Chryseomicrobium, Exiguobacterium and Halomonas. Biodegradation of the dye Malachite Green using the liquid decolorization assay showed that both the individual cultures (Bacillus vietnamensis, Planococcus maritimus and Bacillus pumilus) and their consortium were able to decolorize more than 70% of dye within 24 h of incubation. This is the first report on diversity and extracellular hydrolytic enzymatic activities and bioremediation properties of bacteria from continental slope sediment of eastern Arabian Sea.

2.
J Environ Manage ; 193: 394-399, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28259469

ABSTRACT

The aim of this study was to examine the effect of lindane-degrading yeast on the growth and lindane uptake by Saccharum sp., in doped garden soils. The rhizosphere of Saccharum plant was amended with yeast Candida VITJzN04 by root-inoculation. The bio-augment yeast was applied in two different forms viz., planktonic form and cells immobilized on sugarcane-bagasse, in the pot experiments. Garden soils (lindane∼100 mg/kg) exposed to various treatments were monitored for a period of 30 days, for residual lindane by gas-chromatography analysis. The lindane-removal rates in soil were expressed in terms of half-life period and were recorded as 13.3 days (yeast), 43.3 days (Saccharum), 9.8 days (free yeast-plant) and 7.1 days (immobilized yeast-plant). Additionally, Candida sp., was also identified as a plant growth promoting yeast due to its ability to produce growth hormone and solubilize insoluble phosphates in the soil for better uptake by the plant species. Bio-stimulation of the soil with yeast immobilized on sugarcane bagasse further enhanced the total yeast activity in the soil which in turn had a positive influence on lindane-removal. Combined treatment with bagasse immobilized yeast and plant showed the best lindane degradation. Results suggested that the synergistic activity of plant and yeast resulted in fast and efficient degradation of lindane. Thus, it can be concluded that Saccharum plant in combination with Candida VITJzN04 is an effective alternative for the conventional remediation strategies.


Subject(s)
Hexachlorocyclohexane/metabolism , Saccharum/metabolism , Biodegradation, Environmental , Half-Life , Soil/chemistry
3.
Appl Microbiol Biotechnol ; 99(5): 2351-60, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25304880

ABSTRACT

The objective of this study was to evaluate the effect of an embedded bio-nano hybrid system using nanoscale zinc oxide (n-ZnO) and lindane-degrading yeast Candida VITJzN04 for lindane degradation. Nano-embedding of the yeast was done with chemically synthesized n-ZnO particles (50 mg/mL) and was visualized by atomic force microscope (AFM) and scanning electron microscope (SEM). Nanoparticles were embedded substantially on the surfaces of the yeast cells and translocated into the cell cytoplasm without causing any lethal effect to the cell until 50 mg/mL. Lindane (600 mg/L) degradation was studied both in the individual and hybrid system. Rapid reductive-dechlorination of lindane was attained with n-ZnO under illuminated conditions, with the generation of chlorobenzene and benzene as dechlorination products. The bio-nano hybrid was found to be more effective compared to the native yeasts for lindane degradation and resulted in complete removal within 3 days. The kinetic data analysis implied that the half-life of lindane was 9 h for bio-nano hybrid and 28 h for Candida VITJzN04. The enhanced lindane degradation by bio-nano hybrid might be due to increased porosity and permeability of the yeast cell membrane, facilitating the easy entry of lindane into cell cytoplasm and n-ZnO-mediated dechlorination. To the best of our knowledge, this report, for the first time, suggests the use of n-ZnO-mediated dechlorination of lindane and the novel bio-nano hybrid system that reduces the half-life to one third of the time taken by the yeast alone. The embedded bio-nano hybrid system may be exploited as an effective remediation tool for the treatment of lindane-contaminated wastewaters.


Subject(s)
Candida/metabolism , Environmental Pollutants/metabolism , Hexachlorocyclohexane/metabolism , Benzene/metabolism , Biotransformation , Chlorobenzenes/metabolism , Nanoparticles , Zinc Oxide/metabolism
4.
World J Microbiol Biotechnol ; 30(11): 2839-50, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25086584

ABSTRACT

Cefdinir, a semi-synthetic third generation cephalosporin antibiotic being considered as an emerging pollutant, demands removal from aquatic ecosystems. A yeast strain isolated from pharmaceutical wastewater which was identified as Ustilago sp. SMN03 by molecular techniques and was found to be capable of utilizing cefdinir as a sole carbon source. The isolate was found to degrade 81 % of cefdinir within 6 days under optimized conditions viz. pH 6.0, temperature 30 °C, a shaking speed of 120 rpm, an inoculum dosage of 4 % (w/v) and an initial cefdinir concentration of 200 mg L(-1). Kinetic studies revealed that cefdinir degradation followed the pseudo-first order model, a rate constant of 0.222 per day and a half-life period of 3.26 days. Using LC-MS analysis, six novel intermediates formed during the cefdinir degradation were identified and characterized. FT-IR analysis showed that the functional groups ranging from 1,766 to 1,519 cm(-1), characteristic for lactam ring were completely removed during the cefdinir degradation. The opening of the ß-lactam ring was one of the major steps in the cefdinir degradation process. Based on the results from the present study, a possible pathway of cefdinir degradation by Ustilago sp. SMN03 was proposed. To the best of our knowledge, this is the first report on microbial degradation of cefdinir by yeast.


Subject(s)
Anti-Bacterial Agents/metabolism , Cephalosporins/metabolism , Ustilago/isolation & purification , Ustilago/metabolism , Wastewater/microbiology , Biotransformation , Cefdinir , Chromatography, Liquid , Hydrogen-Ion Concentration , Kinetics , Mass Spectrometry , Spectroscopy, Fourier Transform Infrared , Temperature , Ustilago/classification , Ustilago/genetics
5.
World J Microbiol Biotechnol ; 30(4): 1301-13, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24217897

ABSTRACT

A new yeast strain was isolated from sugarcane cultivation field which was able to utilize lindane as sole carbon source for growth in mineral medium. The yeast was identified and named as Candida sp. VITJzN04 based on a polyphasic approach using morphological, biochemical and 18S rDNA, D1/D2 and ITS sequence analysis. The isolated yeast strain efficiently degraded 600 mg L⁻¹ of lindane within 6 days in mineral medium under the optimal conditions (pH 7; temperature 30 °C and inoculum dosage 0.06 g L⁻¹) with the least half-life of 1.17 days and degradation constant of 0.588 per day. Lindane degradation was tested with various kinetic models and results revealed that the reaction could be described best by first-order and pseudo first-order models. In addition, involvement of the enzymes viz. dechlorinase, dehalogenase, dichlorohydroquinone reductive dechlorinase, lignin peroxidase and manganese peroxidase was noted during lindane degradation. Addition of H2O2 in the mineral medium showed 32 % enhancement of lindane degradation within 3 days. Based on the metabolites identified by GC-MS and FTIR analysis, sequential process of lindane degradation by Candida VITJzN04 was proposed. To the best of our knowledge, this is the first report of isolation and characterization of lindane-degrading Candida sp. and elucidation of enzyme systems during the degradation process.


Subject(s)
Candida/classification , Candida/metabolism , Hexachlorocyclohexane/metabolism , Metabolic Networks and Pathways/genetics , Biotransformation , Candida/genetics , Candida/isolation & purification , Carbohydrates/analysis , Carbon/metabolism , Cluster Analysis , Cytosol/chemistry , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Intergenic/chemistry , DNA, Intergenic/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal/genetics , RNA, Ribosomal, 18S/genetics , Saccharum/growth & development , Sequence Analysis, DNA , Soil Microbiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...