ABSTRACT
In order to assess the impact of nanoplastics on marine species, polystyrene nanoparticles (PS NPs) have been largely used as model particles. Here we studied the effects of 50 nm amino-modified PS-NH2 on Mediterranean sea urchin Paracentrotus lividus immune system cells (coelomocytes) in the presence of celomic fluid (CF) and at different NP concentrations (1, 5, 10, and 25 µg mL-1) and experimental conditions (absence or presence of EDTA). PS-NH2 acquired a protein corona once incubated with CF, dominated by the toposome precursor protein (TPP). In short-term cultures, a significant concentration- and time-dependent decrease in lysosomal membrane stability and apoptotic-like nuclear alterations were observed in phagocytes upon exposure to PS-NH2 (10 and 25 µg mL-1) in CF but they resulted abolished in the presence of EDTA confirming the role of TPP in triggering PS-NH2-coelomocytes interaction and toxicity. PS-NH2 did not alter MXR phenotype but the observed dose-dependent decrease in calcein accumulation suggests the ability of PS-NH2 to affect pump's efflux activity. Overall results encourage additional studies on positively charged nanoplastics, since the observed effects on sea urchin coelomocytes as well as the TPP corona formation might represent a first step for addressing their impact on sensitive marine species.
Subject(s)
Nanoparticles/toxicity , Paracentrotus/drug effects , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Animals , Cations , Nanoparticles/chemistry , Paracentrotus/immunology , Polystyrenes/chemistry , Water Pollutants, Chemical/chemistryABSTRACT
Dried herbal preparations, based on "Zornia latifolia," are commonly sold on web, mainly for their supposed hallucinogenic properties. In this work, we demonstrate that these commercial products contain a different Fabacea, i.e., Stylosanthes guianensis, a cheaper plant, widely cultivated in tropical regions as a fodder legume. We were provided with plant samples of true Zornia latifolia from Brazil, and carried out a thorough comparison of the two species. The assignment of commercial samples was performed by means of micro-morphological analysis, DNA barcoding, and partial phytochemical investigation. We observed that Z. latifolia contains large amounts of flavonoid di-glycosides derived from luteolin, apigenin, and genistein, while in S. guianensis lesser amounts of flavonoids, mainly derived from quercetin, were found. It is likely that the spasmolytic and anxiolytic properties of Z. latifolia, as reported in traditional medicine, derive from its contents in apigenin and/or genistein.