Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Open Biol ; 14(5): 230315, 2024 May.
Article in English | MEDLINE | ID: mdl-38806144

ABSTRACT

Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata ß-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata ß-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata ß-glucan to CR3. Our data suggest that C. glabrata ß-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.


Subject(s)
Candida glabrata , Dendritic Cells , Macrophage-1 Antigen , T-Lymphocytes, Regulatory , beta-Glucans , Candida glabrata/metabolism , Candida glabrata/pathogenicity , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , beta-Glucans/metabolism , beta-Glucans/pharmacology , Animals , Macrophage-1 Antigen/metabolism , Mice , Lectins, C-Type/metabolism , Candidiasis/immunology , Candidiasis/microbiology , Candidiasis/metabolism , Mice, Inbred C57BL
2.
Pharmaceutics ; 15(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38140036

ABSTRACT

Macrophage polarization requires different energy sources and metabolic processes. Therefore, cell energy interference to alter macrophage functions has been proposed as a treatment for severe inflammatory diseases, including sepsis. In this study, targeting cell energy using BAM15 (a mitochondrial uncoupling agent) in human THP-1 and mouse RAW264.7 macrophages prominently interfered with M1 but not M2 polarization. Free BAM15 (BAM15) and BAM15-loaded PLGA particles (BAM15 particles) reduced the inflammatory response of M1 macrophages and enhanced the expression of M2 signature genes with the restoration of mitochondrial activity (extracellular flux analysis) in RAW264.7 cells. Furthermore, BAM15 particles but not BAM15 showed specific effects on the inflammatory response of macrophages but not neutrophils, and the particles were actively captured by splenic and liver macrophages in vivo. Administration of BAM15 and BAM15 particles attenuated the severity of sepsis in LPS-induced sepsis mice. Interestingly, BAM15 particles but not BAM15 alleviated LPS-induced liver injury by reducing hepatic inflammation. Our findings substantiate the superior efficacy of macrophage-targeted therapy using a BAM15 particle-delivery system and provide further support for clinical development as a potential therapy for severe inflammatory diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...