Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Biochem Soc Trans ; 52(3): 1385-1392, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38695682

ABSTRACT

Protein mislocalization is a key initial step in neurodegeneration, regardless of etiology, and has been linked to changes in the dynamic addition of saturated fatty acids to proteins, a process known as S-acylation. With the advent of new techniques to study S-acylation and the recent discovery of new enzymes that facilitate protein deacylation, novel small molecules are emerging as potential new therapeutic treatments. Huntington disease (HD) is a devastating, fatal neurodegenerative disease characterized by motor, cognitive, and psychiatric deficits caused by a CAG repeat expansion in the HTT gene. The protein that is mutated in HD, huntingtin, is less S-acylated which is associated with mutant HTT aggregation and cytotoxicity. Recent exciting findings indicate that restoring S-acylation in HD models using small molecule inhibitors of the deacylation enzymes is protective. Herein, we set out to describe the known roles of S-acylation in HD and how it can be targeted for therapeutic design.


Subject(s)
Huntingtin Protein , Huntington Disease , Huntington Disease/metabolism , Huntington Disease/drug therapy , Humans , Acylation , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Animals , Fatty Acids/metabolism
2.
STAR Protoc ; 5(2): 103068, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38762884

ABSTRACT

S-acylation, commonly palmitoylation, is the addition of fatty acids to cysteines to regulate protein localization and function. S-acylation detection has been hampered by limited sensitivity and selectivity in low-protein, costly samples like cultured neurons. Here, we present a protocol for sensitive and selective bioorthogonal labeling and click-chemistry-based detection of S-acylated proteins in primary hippocampal neurons. We describe steps for metabolically labeling neurons with alkynyl fatty acid, click chemistry, NeutrAvidin-based capture, and elution with hydroxylamine.


Subject(s)
Click Chemistry , Fatty Acids , Hippocampus , Neurons , Click Chemistry/methods , Hippocampus/cytology , Hippocampus/metabolism , Neurons/metabolism , Neurons/cytology , Animals , Acylation , Fatty Acids/chemistry , Fatty Acids/metabolism , Rats , Cells, Cultured , Lipoylation , Proteins/analysis , Proteins/metabolism , Proteins/chemistry
3.
J Biol Chem ; 299(8): 104965, 2023 08.
Article in English | MEDLINE | ID: mdl-37356718

ABSTRACT

Janus Kinase-1 (JAK1) plays key roles during neurodevelopment and following neuronal injury, while activatory JAK1 mutations are linked to leukemia. In mice, Jak1 genetic deletion results in perinatal lethality, suggesting non-redundant roles and/or regulation of JAK1 for which other JAKs cannot compensate. Proteomic studies reveal that JAK1 is more likely palmitoylated compared to other JAKs, implicating palmitoylation as a possible JAK1-specific regulatory mechanism. However, the importance of palmitoylation for JAK1 signaling has not been addressed. Here, we report that JAK1 is palmitoylated in transfected HEK293T cells and endogenously in cultured Dorsal Root Ganglion (DRG) neurons. We further use comprehensive screening in transfected non-neuronal cells and shRNA-mediated knockdown in DRG neurons to identify the related enzymes ZDHHC3 and ZDHHC7 as dominant protein acyltransferases (PATs) for JAK1. Surprisingly, we found palmitoylation minimally affects JAK1 localization in neurons, but is critical for JAK1's kinase activity in cells and even in vitro. We propose this requirement is likely because palmitoylation facilitates transphosphorylation of key sites in JAK1's activation loop, a possibility consistent with structural models of JAK1. Importantly, we demonstrate a leukemia-associated JAK1 mutation overrides the palmitoylation-dependence of JAK1 activity, potentially explaining why this mutation is oncogenic. Finally, we show that JAK1 palmitoylation is important for neuropoietic cytokine-dependent signaling and neuronal survival and that combined Zdhhc3/7 loss phenocopies loss of palmitoyl-JAK1. These findings provide new insights into the control of JAK signaling in both physiological and pathological contexts.


Subject(s)
Cytokines , Lipoylation , Neurons , Signal Transduction , Animals , Female , Humans , Mice , Pregnancy , Cytokines/metabolism , Ganglia, Spinal/metabolism , HEK293 Cells , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Neurons/cytology , Neurons/metabolism , Proteomics , Cell Survival
4.
Front Mol Neurosci ; 16: 1144066, 2023.
Article in English | MEDLINE | ID: mdl-36969554

ABSTRACT

Introduction: AnkG, encoded by the ANK3 gene, is a multifunctional scaffold protein with complex isoform expression: the 480 and 270 kDa isoforms have roles at the axon initial segment and node of Ranvier, whereas the 190 kDa isoform (AnkG-190) has an emerging role in the dendritic shaft and spine heads. All isoforms of AnkG undergo palmitoylation, a post-translational modification regulating protein attachment to lipid membranes. However, palmitoylation of AnkG-190 has not been investigated in dendritic spines. The ANK3 gene and altered expression of AnkG proteins are associated with a variety of neuropsychiatric and neurodevelopmental disorders including bipolar disorder and are implicated in the lithium response, a commonly used mood stabilizer for bipolar disorder patients, although the precise mechanisms involved are unknown. Result: Here, we showed that Cys70 palmitoylation stabilizes the localization of AnkG-190 in spine heads and at dendritic plasma membrane nanodomains. Mutation of Cys70 impairs AnkG-190 function in dendritic spines and alters PSD-95 scaffolding. Interestingly, we find that lithium reduces AnkG-190 palmitoylation thereby increasing its mobility in dendritic spines. Finally, we demonstrate that the palmitoyl acyl transferase ZDHHC8, but not ZDHHC5, increases AnkG-190 stability in spine heads and is inhibited by lithium. Discussion: Together, our data reveal that palmitoylation is critical for AnkG-190 localization and function and a potential ZDHHC8/AnkG-190 mechanism linking AnkG-190 mobility to the neuronal effects of lithium.

5.
Front Physiol ; 14: 1086112, 2023.
Article in English | MEDLINE | ID: mdl-36711022

ABSTRACT

Introduction: Huntington disease is an autosomal dominant neurodegenerative disorder which is caused by a CAG repeat expansion in the HTT gene that codes for an elongated polyglutamine tract in the huntingtin (HTT) protein. Huntingtin is subjected to multiple post-translational modifications which regulate its cellular functions and degradation. We have previously identified a palmitoylation site at cysteine 214 (C214), catalyzed by the enzymes ZDHHC17 and ZDHHC13. Reduced palmitoylation level of mutant huntingtin is linked to toxicity and loss of function. Moreover, we have described N-terminal myristoylation by the N-myristoyltransferases of a short fragment of huntingtin (HTT553-586) at glycine 553 (G553) following proteolysis at aspartate 552 (D552). Results: Here, we show that huntingtin is palmitoylated at numerous cysteines: C105, C433, C3134 and C3144. In addition, we confirm that full-length huntingtin is cleaved at D552 and post-translationally myristoylated at G553. Importantly, blocking caspase cleavage at the critical and pathogenic aspartate 586 (D586) significantly increases posttranslational myristoylation of huntingtin. In turn, myristoylation of huntingtin promotes the co-interaction between C-terminal and N-terminal huntingtin fragments, which is also protective. Discussion: This suggests that the protective effect of inhibiting caspase-cleavage at D586 may be mediated through post-translational myristoylation of huntingtin at G553.

6.
Neuronal Signal ; 5(4): NS20210005, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34659801

ABSTRACT

In neurons, the axon and axon initial segment (AIS) are critical structures for action potential initiation and propagation. Their formation and function rely on tight compartmentalisation, a process where specific proteins are trafficked to and retained at distinct subcellular locations. One mechanism which regulates protein trafficking and association with lipid membranes is the modification of protein cysteine residues with the 16-carbon palmitic acid, known as S-acylation or palmitoylation. Palmitoylation, akin to phosphorylation, is reversible, with palmitate cycling being mediated by substrate-specific enzymes. Palmitoylation is well-known to be highly prevalent among neuronal proteins and is well studied in the context of the synapse. Comparatively, how palmitoylation regulates trafficking and clustering of axonal and AIS proteins remains less understood. This review provides an overview of the current understanding of the biochemical regulation of palmitoylation, its involvement in various neurological diseases, and the most up-to-date perspective on axonal palmitoylation. Through a palmitoylation analysis of the AIS proteome, we also report that an overwhelming proportion of AIS proteins are likely palmitoylated. Overall, our review and analysis confirm a central role for palmitoylation in the formation and function of the axon and AIS and provide a resource for further exploration of palmitoylation-dependent protein targeting to and function at the AIS.

7.
Neurobiol Dis ; 158: 105479, 2021 10.
Article in English | MEDLINE | ID: mdl-34390831

ABSTRACT

Huntington disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HTT gene that codes for an elongated polyglutamine tract in the huntingtin (HTT) protein. HTT is subject to multiple post-translational modifications (PTMs) that regulate its cellular function. Mutating specific PTM sites within mutant HTT (mHTT) in HD mouse models can modulate disease phenotypes, highlighting the key role of HTT PTMs in the pathogenesis of HD. These findings have led to increased interest in developing small molecules to modulate HTT PTMs in order to decrease mHTT toxicity. However, the therapeutic efficacy of pharmacological modulation of HTT PTMs in preclinical HD models remains largely unknown. HTT is palmitoylated at cysteine 214 by the huntingtin-interacting protein 14 (HIP14 or ZDHHC17) and 14-like (HIP14L or ZDHHC13) acyltransferases. Here, we assessed if HTT palmitoylation should be regarded as a therapeutic target to treat HD by (1) investigating palmitoylation dysregulation in rodent and human HD model systems, (2) measuring the impact of mHTT-lowering therapy on brain palmitoylation, and (3) evaluating if HTT palmitoylation can be pharmacologically modulated. We show that palmitoylation of mHTT and some HIP14/HIP14L-substrates is decreased early in multiple HD mouse models, and that mHTT palmitoylation decreases further with aging. Lowering mHTT in the brain of YAC128 mice is not sufficient to rescue aberrant palmitoylation. However, we demonstrate that mHTT palmitoylation can be normalized in COS-7 cells, in YAC128 cortico-striatal primary neurons and HD patient-derived lymphoblasts using an acyl-protein thioesterase (APT) inhibitor. Moreover, we show that modulating palmitoylation reduces mHTT aggregation and mHTT-induced cytotoxicity in COS-7 cells and YAC128 neurons.


Subject(s)
Huntingtin Protein/genetics , Huntingtin Protein/toxicity , Lipoylation/drug effects , Lipoylation/genetics , Acyltransferases/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Cysteine/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Humans , Lymphocytes/drug effects , Lymphocytes/metabolism , Male , Mice , Mutation , Nerve Tissue Proteins/genetics , Neurons/drug effects , Neurons/metabolism , Rats
8.
J Huntingtons Dis ; 10(3): 355-365, 2021.
Article in English | MEDLINE | ID: mdl-34092649

ABSTRACT

BACKGROUND: Therapeutics that lower mutant huntingtin (mHTT) have shown promise in preclinical studies and are in clinical development for the treatment of Huntington disease (HD). Multiple assays have been developed that either quantify mHTT or total HTT but may not accurately measure levels of wild type HTT (wtHTT) in biological samples. OBJECTIVE: To optimize a method that can be used to resolve, quantify and directly compare levels of full length wtHTT and mHTT in HD samples. METHODS: We provide a detailed quantitative immunoblotting protocol to reproducibly resolve full length wtHTT and mHTT in multiple HD mouse and patient samples. RESULTS: We show that this assay can be modified, depending on the sample, to resolve wtHTT and mHTT with a wide range of polyglutamine length differences (ΔQs 22-179). We also demonstrate that this method can be used to quantify allele-selective lowering of mHTT using an antisense oligonucleotide in HD patient-derived cells. CONCLUSION: This quantitative immunoblotting method can be used to reliably resolve full-length HTT alleles with ΔQs≥22 and allows for direct comparison of wtHTT and mHTT levels in HD samples.


Subject(s)
Huntington Disease , Alleles , Animals , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Immunoblotting , Mice
9.
Cell Rep ; 33(7): 108365, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33207199

ABSTRACT

After optic nerve crush (ONC), the cell bodies and distal axons of most retinal ganglion cells (RGCs) degenerate. RGC somal and distal axon degenerations were previously thought to be controlled by two parallel pathways, involving activation of the kinase dual leucine-zipper kinase (DLK) and loss of the axon survival factor nicotinamide mononucleotide adenylyltransferase-2 (NMNAT2), respectively. Here, we report that palmitoylation of both DLK and NMNAT2 by the palmitoyl acyltransferase ZDHHC17 couples these signals. ZDHHC17-dependent palmitoylation enables DLK-dependent somal degeneration after ONC and also ensures NMNAT-dependent distal axon integrity in healthy optic nerves. We provide evidence that ZDHHC17 also controls survival-versus-degeneration decisions in dorsal root ganglion (DRG) neurons, and we identify conserved motifs in NMNAT2 and DLK that govern their ZDHHC17-dependent regulation. These findings suggest that the control of somal and distal axon integrity should be considered as a single, holistic process, mediated by the concerted action of two palmitoylation-dependent pathways.


Subject(s)
Acyltransferases/metabolism , Axons/metabolism , Retinal Ganglion Cells/metabolism , Acyltransferases/physiology , Animals , Axons/physiology , Caenorhabditis elegans , Cell Survival/physiology , Cells, Cultured , Disease Models, Animal , Ganglia, Spinal/metabolism , HEK293 Cells , Humans , Lipoylation , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Inbred C57BL , Nerve Degeneration/pathology , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Optic Nerve/metabolism , Rats , Rats, Sprague-Dawley , Retinal Ganglion Cells/physiology
10.
Elife ; 92020 11 13.
Article in English | MEDLINE | ID: mdl-33185190

ABSTRACT

The palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type-I PDZ domain-containing proteins. However, ZDHHC14's neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the axon initial segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14's importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.


Subject(s)
Acyltransferases/metabolism , Axons/enzymology , Shaker Superfamily of Potassium Channels/metabolism , Acyltransferases/genetics , Animals , Electrophysiological Phenomena , Gene Expression Regulation, Enzymologic , Gene Knockdown Techniques , HEK293 Cells , Hippocampus/cytology , Humans , Mice , Protein Binding , Shaker Superfamily of Potassium Channels/genetics , Two-Hybrid System Techniques
11.
J Biol Chem ; 295(46): 15427-15437, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32958558

ABSTRACT

Palmitoylation, the modification of proteins with the lipid palmitate, is a key regulator of protein targeting and trafficking. However, knowledge of the roles of specific palmitoyl acyltransferases (PATs), which catalyze palmitoylation, is incomplete. For example, little is known about which PATs are present in neuronal axons, although long-distance trafficking of palmitoyl-proteins is important for axon integrity and for axon-to-soma retrograde signaling, a process critical for axon development and for responses to injury. Identifying axonally targeted PATs might thus provide insights into multiple aspects of axonal biology. We therefore comprehensively determined the subcellular distribution of mammalian PATs in dorsal root ganglion (DRG) neurons and, strikingly, found that only two PATs, ZDHHC5 and ZDHHC8, were enriched in DRG axons. Signals via the Gp130/JAK/STAT3 and DLK/JNK pathways are important for axonal injury responses, and we found that ZDHHC5 and ZDHHC8 were required for Gp130/JAK/STAT3, but not DLK/JNK, axon-to-soma signaling. ZDHHC5 and ZDHHC8 robustly palmitoylated Gp130 in cotransfected nonneuronal cells, supporting the possibility that Gp130 is a direct ZDHHC5/8 substrate. In DRG neurons, Zdhhc5/8 shRNA knockdown reduced Gp130 palmitoylation and even more markedly reduced Gp130 surface expression, potentially explaining the importance of these PATs for Gp130-dependent signaling. Together, these findings provide new insights into the subcellular distribution and roles of specific PATs and reveal a novel mechanism by which palmitoylation controls axonal retrograde signaling.


Subject(s)
Acyltransferases/metabolism , Axons/metabolism , Signal Transduction , Acyltransferases/antagonists & inhibitors , Acyltransferases/genetics , Animals , Cells, Cultured , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/metabolism , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Gene Expression , HEK293 Cells , Humans , Janus Kinases/metabolism , Lipoylation , RNA Interference , RNA, Small Interfering/metabolism , Rats , STAT3 Transcription Factor/metabolism
12.
Front Cell Neurosci ; 13: 115, 2019.
Article in English | MEDLINE | ID: mdl-31001086

ABSTRACT

The mechanistic target of rapamycin (mTOR) Complex 1 (mTORC1) controls growth and proliferation of non-neuronal cells, while during neuronal development mTORC1 responds to glutamate and neurotrophins to promote neuronal migration and dendritic arborization. Recent studies reveal that mTORC1 signaling complexes are assembled on lysosomal membranes, but how mTORC1 membrane targeting is regulated is not fully clear. Our examination of palmitoyl-proteomic databases and additional bioinformatic analyses revealed that several mTORC1 proteins are predicted to undergo covalent modification with the lipid palmitate. This process, palmitoylation, can dynamically target proteins to specific membranes but its roles in mTORC1 signaling are not well described. Strikingly, we found that acute pharmacological inhibition of palmitoylation prevents amino acid-dependent mTORC1 activation in HEK293T cells and brain-derived neurotrophic factor (BDNF)-dependent mTORC1 activation in hippocampal neurons. We sought to define the molecular basis for this finding and found that the mTORC1 proteins LAMTOR1 and mTOR itself are directly palmitoylated, while several other mTORC1 proteins are not palmitoylated, despite strong bioinformatic prediction. Interestingly, palmitoylation of LAMTOR1, whose anchoring on lysosomal membranes is important for mTORC1 signaling, was rapidly increased prior to mTORC1 activation. In contrast, mTOR palmitoylation was decreased by stimuli that activate mTORC1. These findings reveal that specific key components of the mTOR pathway are dynamically palmitoylated, suggesting that palmitoylation is not merely permissive for mTOR activation but is instead actively involved in mTORC1-dependent signaling.

13.
Article in English | MEDLINE | ID: mdl-30846936

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) play a critical role in synaptic signaling, and alterations in the synaptic/extrasynaptic NMDAR balance affect neuronal survival. Studies have shown enhanced extrasynaptic GluN2B-type NMDAR (2B-NMDAR) activity in striatal neurons in the YAC128 mouse model of Huntington disease (HD), resulting in increased cell death pathway activation contributing to striatal vulnerability to degeneration. However, the mechanism(s) of altered GluN2B trafficking remains unclear. Previous work shows that GluN2B palmitoylation on two C-terminal cysteine clusters regulates 2B-NMDAR trafficking to the surface membrane and synapses in cortical neurons. Notably, two palmitoyl acyltransferases (PATs), zDHHC17 and zDHHC13, also called huntingtin-interacting protein 14 (HIP14) and HIP14-like (HIP14L), directly interact with the huntingtin protein (Htt), and mutant Htt disrupts this interaction. Here, we investigated whether GluN2B palmitoylation is involved in enhanced extrasynaptic surface expression of 2B-NMDARs in YAC128 striatal neurons and whether this process is regulated by HIP14 or HIP14L. We found reduced GluN2B palmitoylation in YAC128 striatum, specifically on cysteine cluster II. Consistent with that finding, the palmitoylation-deficient GluN2B Cysteine cluster II mutant exhibited enhanced, extrasynaptic surface expression in striatal neurons from wild-type mice, mimicking increased extrasynaptic 2B-NMDAR observed in YAC128 cultures. We also found that HIP14L palmitoylated GluN2B cysteine cluster II. Moreover, GluN2B palmitoylation levels were reduced in striatal tissue from HIP14L-deficient mice, and siRNA-mediated HIP14L knockdown in cultured neurons enhanced striatal neuronal GluN2B surface expression and susceptibility to NMDA toxicity. Thus, altered regulation of GluN2B palmitoylation levels by the huntingtin-associated PAT HIP14L may contribute to the cell death-signaling pathways underlying HD.

14.
Sci Rep ; 9(1): 3632, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30842471

ABSTRACT

After axonal insult and injury, Dual leucine-zipper kinase (DLK) conveys retrograde pro-degenerative signals to neuronal cell bodies via its downstream target c-Jun N-terminal kinase (JNK). We recently reported that such signals critically require modification of DLK by the fatty acid palmitate, via a process called palmitoylation. Compounds that inhibit DLK palmitoylation could thus reduce neurodegeneration, but identifying such inhibitors requires a suitable assay. Here we report that DLK subcellular localization in non-neuronal cells is highly palmitoylation-dependent and can thus serve as a proxy readout to identify inhibitors of DLK palmitoylation by High Content Screening (HCS). We optimized an HCS assay based on this readout, which showed highly robust performance in a 96-well format. Using this assay we screened a library of 1200 FDA-approved compounds and found that ketoconazole, the compound that most dramatically affected DLK localization in our primary screen, dose-dependently inhibited DLK palmitoylation in follow-up biochemical assays. Moreover, ketoconazole significantly blunted phosphorylation of c-Jun in primary sensory neurons subjected to trophic deprivation, a well known model of DLK-dependent pro-degenerative signaling. Our HCS platform is thus capable of identifying novel inhibitors of DLK palmitoylation and signalling that may have considerable therapeutic potential.


Subject(s)
High-Throughput Screening Assays/methods , Ketoconazole/pharmacology , Lipoylation , MAP Kinase Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational , Combinatorial Chemistry Techniques , Cytochrome P-450 CYP3A Inhibitors/pharmacology , HEK293 Cells , Humans , MAP Kinase Kinase Kinases/metabolism , Signal Transduction
15.
Cell Death Differ ; 24(3): 433-444, 2017 03.
Article in English | MEDLINE | ID: mdl-27911442

ABSTRACT

Caspase-6 (CASP6) has an important role in axonal degeneration during neuronal apoptosis and in the neurodegenerative diseases Alzheimer and Huntington disease. Decreasing CASP6 activity may help to restore neuronal function in these and other diseases such as stroke and ischemia, where increased CASP6 activity has been implicated. The key to finding approaches to decrease CASP6 activity is a deeper understanding of the mechanisms regulating CASP6 activation. We show that CASP6 is posttranslationally palmitoylated by the palmitoyl acyltransferase HIP14 and that the palmitoylation of CASP6 inhibits its activation. Palmitoylation of CASP6 is decreased both in Hip14-/- mice, where HIP14 is absent, and in YAC128 mice, a model of Huntington disease, where HIP14 is dysfunctional and where CASP6 activity is increased. Molecular modeling suggests that palmitoylation of CASP6 may inhibit its activation via steric blockage of the substrate-binding groove and inhibition of CASP6 dimerization, both essential for CASP6 function. Our studies identify palmitoylation as a novel CASP6 modification and as a key regulator of CASP6 activity.


Subject(s)
Acyltransferases/metabolism , Caspase 6/metabolism , Acyltransferases/deficiency , Acyltransferases/genetics , Animals , Brain/metabolism , COS Cells , Caspase 6/genetics , Chlorocebus aethiops , Dimerization , Disease Models, Animal , Huntington Disease/metabolism , Huntington Disease/pathology , Immunoprecipitation , Lipoylation , Mice , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Substrate Specificity
16.
BMC Biol ; 14(1): 108, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27927242

ABSTRACT

BACKGROUND: Palmitoylation, the addition of palmitate to proteins by palmitoyl acyltransferases (PATs), is an important regulator of synaptic protein localization and function. Many palmitoylated proteins and PATs have been implicated in neuropsychiatric diseases, including Huntington disease, schizophrenia, amyotrophic lateral sclerosis, Alzheimer disease, and X-linked intellectual disability. HIP14/DHHC17 is the most conserved PAT that palmitoylates many synaptic proteins. Hip14 hypomorphic mice have behavioral and synaptic deficits. However, the phenotype is developmental; thus, a model of post-developmental loss of Hip14 was generated to examine the role of HIP14 in synaptic function in the adult. RESULTS: Ten weeks after Hip14 deletion (iHip14 Δ/Δ ), mice die suddenly from rapidly progressive paralysis. Prior to death the mice exhibit motor deficits, increased escape response during tests of anxiety, anhedonia, a symptom indicative of depressive-like behavior, and striatal synaptic deficits, including reduced probability of transmitter release and increased amplitude but decreased frequency of spontaneous post-synaptic currents. The mice also have increased brain weight due to microgliosis and astrogliosis in the cortex. CONCLUSIONS: Behavioral changes and electrophysiological measures suggest striatal dysfunction in iHip14 Δ/Δ mice, and increased cortical volume due to astrogliosis and microgliosis suggests a novel role for HIP14 in glia. These data suggest that HIP14 is essential for maintenance of life and neuronal integrity in the adult mouse.


Subject(s)
Acyltransferases/genetics , Death, Sudden , Gene Deletion , Acyltransferases/metabolism , Animals , Body Weight , Brain/pathology , Disease Models, Animal , Female , Lipoylation , Male , Mice , Mice, Knockout , Neuroglia/pathology , Organ Size
17.
PLoS Comput Biol ; 11(8): e1004405, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26275289

ABSTRACT

Palmitoylation involves the reversible posttranslational addition of palmitate to cysteines and promotes membrane binding and subcellular localization. Recent advancements in the detection and identification of palmitoylated proteins have led to multiple palmitoylation proteomics studies but these datasets are contained within large supplemental tables, making downstream analysis and data mining time-consuming and difficult. Consequently, we curated the data from 15 palmitoylation proteomics studies into one compendium containing 1,838 genes encoding palmitoylated proteins; representing approximately 10% of the genome. Enrichment analysis revealed highly significant enrichments for Gene Ontology biological processes, pathway maps, and process networks related to the nervous system. Strikingly, 41% of synaptic genes encode a palmitoylated protein in the compendium. The top disease associations included cancers and diseases and disorders of the nervous system, with Schizophrenia, HD, and pancreatic ductal carcinoma among the top five, suggesting that aberrant palmitoylation may play a pivotal role in the balance of cell death and survival. This compendium provides a much-needed resource for cell biologists and the palmitoylation field, providing new perspectives for cancer and neurodegeneration.


Subject(s)
Lipoylation , Neoplasms/metabolism , Nervous System Diseases/metabolism , Palmitates/analysis , Proteome/analysis , Proteomics/methods , Cysteine/chemistry , Cysteine/metabolism , Databases, Protein , Humans , Palmitates/chemistry , Palmitates/metabolism , Proteome/chemistry , Proteome/metabolism
18.
Biochem Soc Trans ; 43(2): 205-10, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25849918

ABSTRACT

Huntington disease (HD) is an adult-onset neurodegenerative disease caused by a CAG expansion in the HTT gene. HD is characterized by striatal atrophy and is associated with motor, cognitive and psychiatric deficits. In the presence of the HD mutation, the interactions between huntingtin (HTT) and huntingtin interacting protein 14 (HIP14 or DHHC17) and HIP14-like (DHHC13, a HIP14 orthologue), palmitoyl acyltransferases for HTT, are disturbed, resulting in reduced palmitoylation of HTT. Genetic ablation of either Hip14 or Hip14l recapitulates many features of HD, including striatal atrophy and motor deficits. However, there are no changes in palmitoylation of HTT in either mouse model and, subsequently, the similarities between the phenotypes of these two mouse models and the HD mouse model are believed to result from underpalmitoylation of other HIP14 and HIP14L substrates. HTT acts as a modulator of HIP14 activity such that in the presence of the HD mutation, HIP14 is less active. Consequently, HIP14 substrates are less palmitoylated, leading to neuronal toxicity. This suggests that altered HIP14-HTT and HIP14L-HTT interactions in the presence of the HD mutation reduces palmitoylation and promotes mislocalization of HTT and other HIP14/HIP14L substrates. Ultimately, HD may be, in part, a disease of altered palmitoylation.


Subject(s)
Acyltransferases/genetics , Adaptor Proteins, Signal Transducing/genetics , Huntington Disease/genetics , Lipoylation/genetics , Nerve Tissue Proteins/genetics , Acyltransferases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Disease Models, Animal , Humans , Huntingtin Protein , Huntington Disease/metabolism , Huntington Disease/pathology , Mice , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Protein Interaction Maps/genetics
19.
Dev Biol ; 397(2): 257-66, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25478910

ABSTRACT

Huntington disease (HD) is an adult-onset neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms that is caused by a CAG expansion in the HTT gene. Palmitoylation is the addition of saturated fatty acids to proteins by DHHC palmitoylacyl transferases. HTT is palmitoylated by huntingtin interacting proteins 14 and 14-like (HIP14 and HIP14L or ZDHHC17 and 13 respectively). Mutant HTT is less palmitoylated and this reduction of palmitoylation accelerates its aggregation and increases cellular toxicity. Mouse models deficient in either Hip14 (Hip14(-/-)) or Hip14l (Hip14l(-/-)) develop HD-like phenotypes. The biological function of HTT palmitoylation and the role that loss of HTT palmitoylation plays in the pathogenesis of HD are unknown. To address these questions mice deficient for both genes were created. Loss of Hip14 and Hip14l leads to early embryonic lethality at day embryonic day 10-11 due to failed chorioallantoic fusion. The chorion is thickened and disorganized and the allantois does not fuse correctly with the chorion and forms a balloon-like shape compared to Hip14l(-/-); Hip14(+/+) littermate control embryos. Interestingly, the Hip14(-/-) ; Hip14(-/-) embryos share many features with the Htt(-/-) embryos, including folding of the yolk sac, a bulb shaped allantois, and a thickened and disorganized chorion. This may be due to a decrease in HTT palmitoylation. In Hip14(-/-); Hip14l(-/-) mouse embryonic fibroblasts show a 25% decrease in HTT palmitoylation compared to wild type cells. This is the first description of a double PAT deficient mouse model where loss of a PAT or multiple PATs results in embryonic lethality in mammals. These results reinforce the physiological importance of palmitoylation during embryogenesis.


Subject(s)
Acyltransferases/metabolism , Chorioallantoic Membrane/embryology , Membrane Fusion/genetics , Placenta/embryology , Serotonin Plasma Membrane Transport Proteins/metabolism , Acyltransferases/genetics , Animals , Blotting, Western , Female , Genotype , In Situ Hybridization , Lipoylation , Membrane Fusion/physiology , Mice , Mice, Knockout , Pregnancy , Real-Time Polymerase Chain Reaction
20.
Hum Mol Genet ; 23(15): 4142-60, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24705354

ABSTRACT

HIP14 is the most highly conserved of 23 human palmitoyl acyltransferases (PATs) that catalyze the post-translational addition of palmitate to proteins, including huntingtin (HTT). HIP14 is dysfunctional in the presence of mutant HTT (mHTT), the causative gene for Huntington disease (HD), and we hypothesize that reduced palmitoylation of HTT and other HIP14 substrates contributes to the pathogenesis of the disease. Here we describe the yeast two-hybrid (Y2H) interactors of HIP14 in the first comprehensive study of interactors of a mammalian PAT. Unexpectedly, we discovered a highly significant overlap between HIP14 interactors and 370 published interactors of HTT, 4-fold greater than for control proteins (P = 8 × 10(-5)). Nearly half of the 36 shared interactors are already implicated in HD, supporting a direct link between HIP14 and the disease. The HIP14 Y2H interaction set is significantly enriched for palmitoylated proteins that are candidate substrates. We confirmed that three of them, GPM6A, and the Sprouty domain-containing proteins SPRED1 and SPRED3, are indeed palmitoylated by HIP14; the first enzyme known to palmitoylate these proteins. These novel substrates functions might be affected by reduced palmitoylation in HD. We also show that the vesicular cargo adapter optineurin, an established HTT-binding protein, co-immunoprecipitates with HIP14 but is not palmitoylated. mHTT leads to mislocalization of optineurin and aberrant cargo trafficking. Therefore, it is possible that optineurin regulates trafficking of HIP14 to its substrates. Taken together, our data raise the possibility that defective palmitoylation by HIP14 might be an important mechanism that contributes to the pathogenesis of HD.


Subject(s)
Acyltransferases/genetics , Adaptor Proteins, Signal Transducing/genetics , Huntington Disease/genetics , Nerve Tissue Proteins/genetics , Protein Processing, Post-Translational , Acyltransferases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , COS Cells , Cell Cycle Proteins , Chlorocebus aethiops , Gene Regulatory Networks , HEK293 Cells , Humans , Huntingtin Protein , Huntington Disease/metabolism , Huntington Disease/pathology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lipoylation , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Transport Proteins , Molecular Sequence Annotation , Nerve Tissue Proteins/metabolism , Protein Binding , Protein Interaction Mapping , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Transcription Factor TFIIIA/genetics , Transcription Factor TFIIIA/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL