Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 278(Pt 3): 134865, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39163951

ABSTRACT

The COVID-19 pandemic has revealed weaknesses in healthcare systems and underscored the need for advanced antimicrobial materials. This study investigates the quaternization of agar, a seaweed-derived polysaccharide, and the development of electrospun membranes for air filtration in facemasks and biomedical applications. Using the betacoronavirus MHV-3 as a model, quaternized agar and membranes achieved a 90-99.99 % reduction in viral load, without associated cytotoxicity. The quaternization process reduced the viscosity of the solution from 1.19 ± 0.005 to 0.64 ± 0.005 Pa.s and consequently the electrospun fiber diameter ranged from 360 to 185 nm. Membranes synthesized based on polyvinyl alcohol and thermally cross-linked with citric acid exhibited lower water permeability. Avoiding organic solvents in the electrospinning technique ensured eco-friendly production. This approach offers a promising way to develop biocompatible and functional materials for healthcare and environmental applications.


Subject(s)
Agar , SARS-CoV-2 , Agar/chemistry , SARS-CoV-2/drug effects , COVID-19/virology , COVID-19/prevention & control , Humans , Virus Inactivation/drug effects , Viscosity , Membranes, Artificial , Animals , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology , Pandemics/prevention & control , Chlorocebus aethiops , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
2.
Int J Biol Macromol ; 263(Pt 1): 130611, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447837

ABSTRACT

The increase of bacterial resistance to antibiotics is a growing concern worldwide and the search for new therapies could cost billions of dollars and countless lives. Inert surfaces are major sources of contamination due to easier adhesion and formation of bacterial biofilms, hindering the disinfection process. Therefore, the objective of this study was to develop a photoactivatable and anti-adhesive kappa-carrageenan coating using proanthocyanidin as a photosensitizer. The complete reduction (>5-log10 CFU/cm3) of culturable cells of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa pathogens was achieved after 30 min of exposure to visible light (420 nm; 30 mW/cm2) with 5 % (w/v) of the photosensitizer. Cell membrane damage was confirmed by measuring potassium leakage, epifluorescence microscopy and bacterial motility analysis. Overall, visible light irradiation on coated solid surfaces mediated by proanthocyanidin showed no cytotoxicity and inactivated clinically important pathogens through the generation of reactive oxygen species, inhibiting bacterial initial adhesion. The developed coating is a promising alternative for a wide range of applications related to surface disinfection and food biopreservation.


Subject(s)
Photosensitizing Agents , Proanthocyanidins , Carrageenan/pharmacology , Photosensitizing Agents/pharmacology , Proanthocyanidins/pharmacology , Light , Biofilms , Escherichia coli , Bacteria
3.
Carbohydr Polym ; 308: 120645, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36813338

ABSTRACT

Cationization is a promising chemical modification technique that improves properties by attaching permanent positive charges to the backbone of biopolymers. Carrageenan is a widely available and non-toxic polysaccharide, commonly used in food industry but with low solubility in cold water. We performed a central composite design experiment to check the parameters that most influence the degree of cationic substitution and the film solubility. Hydrophilic quaternary ammonium groups on the carrageenan backbone enhance interaction in drug delivery systems and create active surfaces. Statistical analysis indicated that within the studied range, only the molar ratio between the cationizing reagent and the repeating disaccharide unit of carrageenan had a significant effect. Optimized parameters using 0.086 g of sodium hydroxide and glycidyltrimethylammonium/disaccharide repeating unit of 6.83 achieved 65.47 % degree of substitution and 4.03 % solubility. Characterizations confirmed the effective incorporation of cationic groups into the commercial structure of carrageenan and thermal stability improvement of the derivatives.


Subject(s)
Polysaccharides , Research Design , Carrageenan/chemistry , Drug Liberation , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL