Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 2387, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501322

ABSTRACT

Transcription Factor 4 (TCF4) has been associated with autism, schizophrenia, and other neuropsychiatric disorders. However, how pathological TCF4 mutations affect the human neural tissue is poorly understood. Here, we derive neural progenitor cells, neurons, and brain organoids from skin fibroblasts obtained from children with Pitt-Hopkins Syndrome carrying clinically relevant mutations in TCF4. We show that neural progenitors bearing these mutations have reduced proliferation and impaired capacity to differentiate into neurons. We identify a mechanism through which TCF4 loss-of-function leads to decreased Wnt signaling and then to diminished expression of SOX genes, culminating in reduced progenitor proliferation in vitro. Moreover, we show reduced cortical neuron content and impaired electrical activity in the patient-derived organoids, phenotypes that were rescued after correction of TCF4 expression or by pharmacological modulation of Wnt signaling. This work delineates pathological mechanisms in neural cells harboring TCF4 mutations and provides a potential target for therapeutic strategies for genetic disorders associated with this gene.


Subject(s)
Intellectual Disability , Neurons , Cell Proliferation/genetics , Child , Humans , Hyperventilation/metabolism , Intellectual Disability/genetics , Neurons/metabolism , Transcription Factor 4/genetics , Transcription Factor 4/metabolism
2.
Cancer Res ; 81(4): 1040-1051, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33355182

ABSTRACT

Several phenotypes that impact the capacity of cancer cells to survive and proliferate are dynamic. Here we used the number of cells in colonies as an assessment of fitness and devised a novel method called Dynamic Fitness Analysis (DynaFit) to measure the dynamics in fitness over the course of colony formation. DynaFit is based on the variance in growth rate of a population of founder cells compared with the variance in growth rate of colonies with different sizes. DynaFit revealed that cell fitness in cancer cell lines, primary cancer cells, and fibroblasts under unhindered growth conditions is dynamic. Key cellular mechanisms such as ERK signaling and cell-cycle synchronization differed significantly among cells in colonies after 2 to 4 generations and became indistinguishable from randomly sampled cells regarding these features. In the presence of cytotoxic agents, colonies reduced their variance in growth rate when compared with their founder cell, indicating a dynamic nature in the capacity to survive and proliferate in the presence of a drug. This finding was supported by measurable differences in DNA damage and induction of senescence among cells of colonies. The presence of epigenetic modulators during the formation of colonies stabilized their fitness for at least four generations. Collectively, these results support the understanding that cancer cell fitness is dynamic and its modulation is a fundamental aspect to be considered in comprehending cancer cell biology and its response to therapeutic interventions. SIGNIFICANCE: Cancer cell fitness is dynamic over the course of the formation of colonies. This dynamic behavior is mediated by asymmetric mitosis, ERK activity, cell-cycle duration, and DNA repair capacity in the absence or presence of a drug.


Subject(s)
Cell Proliferation/physiology , Genetic Fitness/physiology , Neoplasms/pathology , Cell Cycle/drug effects , Cell Cycle/physiology , Cell Proliferation/drug effects , Cells, Cultured , Clone Cells/pathology , Clone Cells/physiology , DNA Damage/drug effects , DNA Damage/physiology , Genetic Fitness/drug effects , Humans , MCF-7 Cells , Mitosis/drug effects , Mitosis/physiology , Temozolomide/pharmacology , Tumor Stem Cell Assay
SELECTION OF CITATIONS
SEARCH DETAIL