Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 14(6)2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35335475

ABSTRACT

In this work, recycled poly(ethylene terephthalate) (PETR) was blended with virgin high-density polyethylene (HDPE) in an internal mixer in an attempt to obtain a material with improved properties. A compatibilizer (PE-g-MA) and a chain extender (Joncryl) were added to the PETR/HDPE blend and the rheological and thermal properties of the modified and unmodified blends as well as those of virgin PET with virgin HDPE (PETV/HDPE). All the blends were characterized by torque rheometry, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The data obtained indicate that the incorporation of either the chain extender or the compatibilizer agent led to increases in torque (and hence in viscosity) of the blend compared to that of the neat polymers. The joint incorporation of the chain extender and compatibilizer further increased the viscosity of the systems. Their effect on the crystallinity parameters of HDPE was minimal, but they reduced the crystallinity and crystallization temperature of virgin and recycled PET in the blends. The thermal stability of the PETR/HDPE blend was similar to that of the PETV/HDPE blend, and it was not affected by the incorporation of the chain extender and/or compatibilizer.

2.
Brain Struct Funct ; 221(7): 3547-59, 2016 09.
Article in English | MEDLINE | ID: mdl-26416171

ABSTRACT

What is the influence of sex and age on the quantitative cell composition of the human brain? By using the isotropic fractionator to estimate absolute cell numbers in selected brain regions, we looked for sex- and age-related differences in 32 medial temporal lobes (comprised basically by the hippocampal formation, amygdala and parahippocampal gyrus), sixteen male (29-92 years) and sixteen female (25-82); and 31 cerebella, seventeen male (29-92 years) and fourteen female (25-82). These regions were dissected from the brain, fixed and homogenized, and then labeled with a DNA-marker (to count all nuclei) and with a neuron-specific nuclear marker (to estimate neuron number). Total number of cells in the medial temporal lobe was found to be 1.91 billion in men, and 1.47 billion in women, a difference of 23 %. This region showed 34 % more neurons in men than in women: 525.1 million against 347.4 million. In contrast, no sex differences were found in the cerebellum. Regarding the influence of age, a quadratic correlation was found between neuronal numbers and age in the female medial temporal lobe, suggesting an early increase followed by slight decline after age 50. The cerebellum showed numerical stability along aging for both neurons and non-neuronal cells. In sum, results indicate a sex-related regional difference in total and neuronal cell numbers in the medial temporal lobe, but not in the cerebellum. On the other hand, aging was found to impact on cell numbers in the medial temporal lobe, while the cerebellum proved resilient to neuronal losses in the course of life.


Subject(s)
Aging , Cerebellum/cytology , Neurons/cytology , Sex Characteristics , Temporal Lobe/cytology , Adult , Aged , Aged, 80 and over , Cell Count , Cerebellum/physiology , Female , Humans , Male , Middle Aged , Neurons/physiology , Temporal Lobe/physiology
3.
PLoS One ; 9(11): e111733, 2014.
Article in English | MEDLINE | ID: mdl-25372872

ABSTRACT

Sex differences in the human olfactory function reportedly exist for olfactory sensitivity, odorant identification and memory, and tasks in which odors are rated based on psychological features such as familiarity, intensity, pleasantness, and others. Which might be the neural bases for these behavioral differences? The number of cells in olfactory regions, and especially the number of neurons, may represent a more accurate indicator of the neural machinery than volume or weight, but besides gross volume measures of the human olfactory bulb, no systematic study of sex differences in the absolute number of cells has yet been undertaken. In this work, we investigate a possible sexual dimorphism in the olfactory bulb, by quantifying postmortem material from 7 men and 11 women (ages 55-94 years) with the isotropic fractionator, an unbiased and accurate method to estimate absolute cell numbers in brain regions. Female bulbs weighed 0.132 g in average, while male bulbs weighed 0.137 g, a non-significant difference; however, the total number of cells was 16.2 million in females, and 9.2 million in males, a significant difference of 43.2%. The number of neurons in females reached 6.9 million, being no more than 3.5 million in males, a difference of 49.3%. The number of non-neuronal cells also proved higher in women than in men: 9.3 million and 5.7 million, respectively, a significant difference of 38.7%. The same differences remained when corrected for mass. Results demonstrate a sex-related difference in the absolute number of total, neuronal and non-neuronal cells, favoring women by 40-50%. It is conceivable that these differences in quantitative cellularity may have functional impact, albeit difficult to infer how exactly this would be, without knowing the specific circuits cells make. However, the reported advantage of women as compared to men may stimulate future work on sex dimorphism of synaptic microcircuitry in the olfactory bulb.


Subject(s)
Olfactory Bulb/cytology , Sex Characteristics , Aged , Aged, 80 and over , Cell Count , Female , Humans , Male , Middle Aged , Neuroglia/cytology , Neurons/cytology , Olfactory Bulb/anatomy & histology , Organ Size , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL