Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Article in English | MEDLINE | ID: mdl-39136739

ABSTRACT

Tanshinone, a lipophilic component of Salvia miltiorrhiza, is used to treat diseases like atherosclerosis, hypertension, Alzheimer's disease, and diabetes mellitus through its pharmacological activities like anti-inflammatory, anti-oxidant, and anti-tumor. Excessive inflammation is the primary cause of bone diseases such as osteoporosis and rheumatoid arthritis, affecting more than millions of people across the globe. Recently, tanshinone has shown potential benefits against bone diseases by modulating signaling pathways accountable for the proliferation and differentiation of bone cells. In vitro and in vivo studies reported that tanshinone promotes osteoblast formation and mineralization and suppresses excessive bone resorption during disease conditions. In this review, we have summarized the beneficial effects of tanshinone and other extracts of Salvia miltiorrhiza for bone health and their potential molecular targets in signaling.

2.
J. physiol. biochem ; 79(3): 635-652, ago. 2023.
Article in English | IBECS | ID: ibc-223754

ABSTRACT

Hypobaric hypoxia (HH) leads to various adverse effects on skeletal muscles, including atrophy and reduced oxidative work capacity. However, the effects of HH on muscle fatigue resistance and myofiber remodeling are largely unexplored. Therefore, the present study aimed to explore the impact of HH on slow-oxidative fibers and to evaluate the ameliorative potential of exercise preconditioning and nanocurcumin formulation on muscle anti-fatigue ability. C2C12 cells (murine myoblasts) were used to assess the effect of hypoxia (0.5%, 24 h) with and without the nanocurcumin formulation (NCF) on myofiber phenotypic conversion. To further validate this hypothesis, male Sprague Dawley rats were exposed to a simulated HH (7620 m) for 7 days, along with NCF administration and/or exercise training. Both in vitro and in vivo studies revealed a significant reduction in slow-oxidative fibers (p < 0.01, 61% vs. normoxia control) under hypoxia. There was also a marked decrease in exhaustion time (p < 0.01, 65% vs. normoxia) in hypoxia control rats, indicating a reduced work capacity. Exercise preconditioning along with NCF supplementation significantly increased the slow-oxidative fiber proportion and exhaustion time while maintaining mitochondrial homeostasis. These findings suggest that HH leads to an increased transition of slow-oxidative fibers to fast glycolytic fibers and increased muscular fatigue. Administration of NCF in combination with exercise preconditioning restored this myofiber remodeling and improved muscle anti-fatigue ability. (AU)


Subject(s)
Animals , Mice , Rats , Muscle, Skeletal/metabolism , Hypoxia/metabolism , Muscle Fatigue , Oxidation-Reduction , Rats, Sprague-Dawley
3.
Viral Immunol ; 36(8): 495-502, 2023 10.
Article in English | MEDLINE | ID: mdl-37643285

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulates the plasma B cells to secrete specific antibodies against the viral antigen. However, not all antibodies can prevent the virus from entering the cells. The subpopulation of antibodies which blocks the entry of the virus into host cells is termed neutralizing antibodies (NAbs). The gold standard test for the detection of NAbs is the viral plaque reduction and neutralization test; however, various other methods can also be utilized to detect NAbs. In this study, we have developed an Enzyme Linked Immunosobent Assay (ELISA)-based protocol for rapid detection of SARS CoV-2 NAb by inhibiting the binding of the spike protein receptor-binding domain to angiotensin converting enzyme 2 and compared it with cPASS neutralizing antibody kit, which was approved by the Food and Drug Administration (FDA). The results obtained suggest that the in-house ELISA developed for the detection of NAbs against SARS-CoV-2 is rapid and reliable. Compared to FDA-approved GenScript's cPass assay, the specificity and the sensitivity of the in-house-developed ELISA kit were 100% (95% confidence intervals of 69.15-100.00) and 96% (95% confidence intervals of 86.29-99.51), respectively. Thus, the ELISA protocol developed to test the neutralizing activities of antibodies is rapid, which requires a BSL-2 infrastructure facility and can be easily performed. It has very high potential applications in the rapid screening of NAb against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Antibodies, Viral , Antibodies, Neutralizing , Enzyme-Linked Immunosorbent Assay , Spike Glycoprotein, Coronavirus/chemistry
4.
J Physiol Biochem ; 79(3): 635-652, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37147493

ABSTRACT

Hypobaric hypoxia (HH) leads to various adverse effects on skeletal muscles, including atrophy and reduced oxidative work capacity. However, the effects of HH on muscle fatigue resistance and myofiber remodeling are largely unexplored. Therefore, the present study aimed to explore the impact of HH on slow-oxidative fibers and to evaluate the ameliorative potential of exercise preconditioning and nanocurcumin formulation on muscle anti-fatigue ability. C2C12 cells (murine myoblasts) were used to assess the effect of hypoxia (0.5%, 24 h) with and without the nanocurcumin formulation (NCF) on myofiber phenotypic conversion. To further validate this hypothesis, male Sprague Dawley rats were exposed to a simulated HH (7620 m) for 7 days, along with NCF administration and/or exercise training. Both in vitro and in vivo studies revealed a significant reduction in slow-oxidative fibers (p < 0.01, 61% vs. normoxia control) under hypoxia. There was also a marked decrease in exhaustion time (p < 0.01, 65% vs. normoxia) in hypoxia control rats, indicating a reduced work capacity. Exercise preconditioning along with NCF supplementation significantly increased the slow-oxidative fiber proportion and exhaustion time while maintaining mitochondrial homeostasis. These findings suggest that HH leads to an increased transition of slow-oxidative fibers to fast glycolytic fibers and increased muscular fatigue. Administration of NCF in combination with exercise preconditioning restored this myofiber remodeling and improved muscle anti-fatigue ability.


Subject(s)
Hypoxia , Muscle, Skeletal , Rats , Male , Mice , Animals , Rats, Sprague-Dawley , Muscle, Skeletal/metabolism , Hypoxia/metabolism , Oxidation-Reduction , Muscle Fatigue
5.
IUBMB Life ; 75(8): 673-687, 2023 08.
Article in English | MEDLINE | ID: mdl-37002613

ABSTRACT

Severe hypoxia triggers apoptosis leads to myofibers loss and is attributable to impaired intracellular calcium (iCa2+ ) homeostasis, resulting in reduced muscle activity. Hypoxia increases intracellular Ca2+ by activating the release of Ca2+ from iCa2+ stores, however, the effect of increased [iCa2+ ] on the mitochondria of muscle cells at high-altitude hypoxia is largely unexplored. This study examined mitochondrial Ca2+ overload due to altered expression of mitochondrial calcium uptake 1 (MICU1), that is, a gatekeeper of the mitochondrial Ca2+ uniporter, impaired mitochondrial membrane potential (ΔΨm). p53 stabilization and its translocation to the mitochondria were observed following disrupted mitochondrial membrane integrity in myoblasts under hypoxia. Furthermore, the downstream effects of p53 led to the upregulation of proapoptotic proteins (Bax, Caspase-3, and cytochrome C) in myoblasts under hypoxia. Nanocurcumin-pyrroloquinoline quinone formulation (NCF; Indian patent no. 302877), developed to address hypoxia-induced consequences, was found to be beneficial in maintaining mitochondrial Ca2+ homeostasis and limiting p53 translocation into mitochondria under hypoxia in muscle myoblasts. NCF treatment also modulates heat shock proteins and apoptosis-regulating protein expression in myoblasts. Conclusively, we proposed that mitochondrial Ca2+ overload due to altered MICU1 expression intensifies apoptosis and mitochondrial dysfunctionality. The study also reported that NCF could improve mitochondrial [Ca2+ ] homeostasis and antiapoptotic ability in C2C12 myoblasts under hypoxia.


Subject(s)
Calcium , Tumor Suppressor Protein p53 , Humans , Calcium/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Proteostasis , Mitochondria/metabolism , Myoblasts , Apoptosis , Hypoxia/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Membrane Potential, Mitochondrial
7.
High Alt Med Biol ; 23(3): 249-263, 2022 09.
Article in English | MEDLINE | ID: mdl-35384739

ABSTRACT

Kushwaha, Asha D., and Deepika Saraswat. A nanocurcumin and pyrroloquinoline quinone formulation prevents hypobaric hypoxia-induced skeletal muscle atrophy by modulating NF-κB signaling pathway. High Alt Med Biol. 23:249-263, 2022. Background: Hypobaric hypoxia (HH)-induced deleterious skeletal muscle damage depends on exposure time and availability of oxygen at cellular level, which eventually can limit human work performance at high altitude (HA). Despite the advancements made in pharmacological (performance enhancer, antioxidants) and nonpharmacological therapeutics (acclimatization strategies), only partial success has been achieved in improving physical performance at HA. A distinctive combination of nanocurcumin (NC) and pyrroloquinoline quinone (PQQ) has been formulated (named NCF [nanocurcumin formulation], Indian patent No. 302877) in our laboratory, and has proven very promising in improving cardiomyocyte adaptation to chronic HH. We hypothesized that NCF might improve skeletal muscle adaptation and could be a performance enhancer at HA. Material and Methods: Adult Sprague-Dawley rats (220 ± 10 g) were divided into five groups (n = 6/group): normoxia vehicle control, hypoxia vehicle control, hypoxia NCF, hypoxia NC, and hypoxia PQQ. All the animals (except those in normoxia) were exposed to simulated HH in a chamber at temperature 22°C ± 2°C, humidity 50% ± 5%, altitude 25,000 ft for 1, 3, or 7 days. After completion of the stipulated exposure time, gastrocnemius and soleus muscles were excised from animals for further analysis. Results: Greater lengths of hypoxic exposure caused progressively increased muscle ring finger-1 (MuRF-1; p < 0.01) expression and calpain activation (0.56 ± 0.05 vs. 0.13 ± 0.02 and 0.44 ± 0.03 vs. 0.12 ± 0.021) by day 7, respectively in the gastrocnemius and soleus muscles. Myosin heavy chain type I (slow oxidative) fibers significantly (p > 0.01) decreased in gastrocnemius (>50%) and soleus (>46%) muscles by the seventh day of exposure. NCF supplementation showed (p ≤ 0.05) tremendous improvement in skeletal muscle acclimatization through effective alleviation of oxidative damage, and changes in calpain activity and atrophic markers at HA compared with hypoxia control or treatment alone with NC/PQQ. Conclusion: Thus, NCF-mediated anti-oxidative, anti-inflammatory effects lead to decreased proteolysis resulting in mitigated skeletal muscle atrophy under HH.


Subject(s)
NF-kappa B , PQQ Cofactor , Animals , Atrophy/metabolism , Calpain/metabolism , Calpain/therapeutic use , Humans , Hypoxia/drug therapy , Muscle, Skeletal/metabolism , NF-kappa B/metabolism , NF-kappa B/therapeutic use , PQQ Cofactor/metabolism , PQQ Cofactor/therapeutic use , Rats , Rats, Sprague-Dawley , Signal Transduction
9.
Viral Immunol ; 35(4): 284-290, 2022 05.
Article in English | MEDLINE | ID: mdl-35325564

ABSTRACT

Coronavirus disease 2019 (COVID-19) continuously affecting the lives of millions of people. The virus is spread through the respiratory route to an uninfected person, causing mild-to-moderate respiratory disease-like symptoms that sometimes progress to severe form and can be fatal. When the host is infected with the virus, both innate and adaptive immunity comes into play. The effector T cells act as the master player of adaptive immune response in eradicating the virus from the system. But during cancer and chronic viral infections, the fate of an effector T cell is altered, and the T cell may enters a state of exhaustion, which is marked by loss of effector function, depleted proliferative capacity and cytotoxic effect accomplished by an increased expression of numerous inhibitory receptors such as programmed cell death protein 1 (PD-1), lymphocyte-activation protein 3 (LAG-3), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) on their surface. Various other transcriptional and epigenetic changes take place inside the T cell when it enters into an exhausted state. Latest studies point toward the induction of an abnormal immune response such as lymphopenia, cytokine storm, and T cell exhaustion during SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection. This review sheds light on the dysfunctional state of T cells during chronic viral infection and COVID-19. Understanding the cause and the effect of T cell exhaustion observed during COVID-19 may help resolve new therapeutic potentials for treating chronic infections and other diseases.


Subject(s)
COVID-19 , Adaptive Immunity , Cytokine Release Syndrome , Humans , SARS-CoV-2 , T-Lymphocytes
10.
Immunopharmacol Immunotoxicol ; 44(2): 141-146, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35130792

ABSTRACT

Over the last twenty months, the attention of the world has been focusing on managing the unprecedented and devastating wave of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) and mitigating its impacts. Recent findings indicated that high levels of pro-inflammatory cytokines are leading cause of poor prognosis in severely ill COVID-19 patients. Presently, the multiple variants and highly contagious nature of virus makes challenge humongous. The shortage and vaccine hesitancy also prompted to develop antiviral therapeutic agents to manage this pandemic. Nanocurcumin has potential antiviral activities and also beneficial in post COVID inflammatory complications. We have developed nanocurcumin based formulation using pyrroloquinoline quinone (PQQ) which protects cardio-pulmonary function and mitochondrial homeostasis in hypobaric hypoxia induced right ventricular hypertrophy in animal model and human ventricular cardiomyocytes. Nanocurcumin based formulation (NCF) with improved bioavailability, has proven several holistic therapeutic effects including myocardial protection, and prevents edema formation, anti-inflammatory and antioxidant properties, maintaining metabolic and mitochondrial homeostasis under hypoxic condition. The post COVID-inflammatory syndrome also reported to cause impaired heart function, lung injuries and increased C-reactive protein level in severely ill patients. Thus, we speculate that NCF could be a new treatment option to manage post COVID-19 inflammatory syndrome.


Subject(s)
COVID-19 Drug Treatment , Animals , Antioxidants/pharmacology , Humans , Hypoxia/drug therapy , Hypoxia/metabolism , Mitochondria , Pandemics
11.
J Cell Physiol ; 233(10): 6851-6865, 2018 10.
Article in English | MEDLINE | ID: mdl-29665093

ABSTRACT

This study reports the role of MAPKs (JNK, ERK, and p38), and activator protein-1 (AP-1) transcription factor in the hypobaric hypoxia induced change in lung tissue. Healthy male Sprague-Dawley rats were exposed to hypobaric hypoxia for 6, 12, 24, 48, 72, and 120 hr. Hypoxia resulted in significant increase in reactive oxygen species (ROS), vascular endothelial growth factor (VEGF) and decreased nitric oxide (NO), these act as signaling molecules for activation of MAPK and also contribute in development of vascular leakage (an indicator of pulmonary edema) as confirmed by histological studies. Our results confirmed JNK activation as an immediate early response (peaked at 6-48 hr), activation of ERKs (peaked at 24-72 hr) and p38 (peaked at 72-120 hr) as a secondary response to hypoxia. The MAPK pathway up regulated its downstream targets phospho c-Jun (peaked at 6-120 hr), JunB (peaked at 24-120 hr) however, decreased c-Fos, and JunD levels. DNA binding activity also confirmed activation of AP-1 transcription factor in lung tissue under hypobaric hypoxia. Further, we analyzed the proliferative and inflammatory genes regulated by different subunits of AP-1 to explore its role in vascular leakage. Increased expression of cyclin D1 (peaked at 12-72 hr) and p16 level (peaked at 48-120 hr) were correlated to the activation of c-jun, c-Fos and JunB. Administration of NFκB inhibitor caffeic acid phenethyl ester (CAPE) and SP600125 (JNK inhibitor) had no effect on increased levels of Interferon-γ (IFN-γ), Interleukin-1 (IL-1), and Tumor Necrosis Factor-α (TNF-α) thereby confirming the involvement of AP-1 as well as NFκB in inflammation. Expression of c-jun, c-Fos were correlated with activation of proliferative genes and JunB, Fra-1 with pro-inflammatory cytokines. In conclusion immediate response to hypobaric hypoxia induced c-Jun:c-Fos subunits of AP-1; responsible for proliferation that might cause inhomogeneous vasoconstriction leading to vascular leakage and inflammation at increased duration of hypobaric hypoxia exposure.


Subject(s)
Hypoxia/metabolism , MAP Kinase Signaling System/physiology , Transcription Factor AP-1/metabolism , Transcriptional Activation/physiology , Animals , Humans , Lung/metabolism , Male , Proto-Oncogene Proteins c-fos/metabolism , Rats, Sprague-Dawley , Signal Transduction/physiology , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism
12.
J Basic Clin Physiol Pharmacol ; 28(5): 443-453, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28672774

ABSTRACT

BACKGROUND: Chronic hypobaric hypoxia (cHH) mediated cardiac insufficiencies are associated with pathological damage. Sustained redox stress and work load are major causative agents of cardiac insufficiencies under cHH. Despite the advancements made in pharmacological (anti-oxidants, vasodilators) and non-pharmacological therapeutics (acclimatization strategies and schedules), only partial success has been achieved in improving cardiac acclimatization to cHH. This necessitates the need for potent combinatorial therapies to improve cardiac acclimatization at high altitudes. We hypothesize that a combinatorial therapy comprising preconditioning to mild aerobic treadmill exercise and supplementation with nanocurcumin formulation (NCF) consisting of nanocurcumin (NC) and pyrroloquinoline quinone (PQQ) might improve cardiac adaptation at high altitudes. METHODS: Adult Sprague-Dawley rats pre-conditioned to treadmill exercise and supplemented with NCF were exposed to cHH (7620 m altitude corresponding to pO2~8% at 28±2°C, relative humidity 55%±1%) for 3 weeks. The rat hearts were analyzed for changes in markers of oxidative stress (free radical leakage, lipid peroxidation, manganese-superoxide dismutase [MnSOD] activity), cardiac injury (circulating cardiac troponin I [TnI] and T [cTnT], myocardial creatine kinase [CK-MB]), metabolic damage (lactate dehydrogenase [LDH] and acetyl-coenzyme A levels, lactate and pyruvate levels) and bio-energetic insufficiency (ATP, p-AMPKα). RESULTS: Significant modulations (p≤0.05) in cardiac redox status, metabolic damage, cardiac injury and bio-energetics were observed in rats receiving both NCF supplementation and treadmill exercise-preconditioning compared with rats receiving only one of the treatments. CONCLUSIONS: The combinatorial therapeutic strategy showed a tremendous improvement in cardiac acclimatization to cHH compared to either exercise-preconditioning or NCF supplementation alone which was evident from the effective modulation in redox, metabolic, contractile and bio-energetic homeostasis.


Subject(s)
Adaptation, Physiological/drug effects , Curcumin/pharmacology , Heart/drug effects , Hypoxia/drug therapy , Nanoparticles/administration & dosage , Physical Conditioning, Animal/physiology , Acclimatization/drug effects , Altitude , Animals , Antioxidants/pharmacology , Lipid Peroxidation/drug effects , Male , Myocardium/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley
13.
Int J Med Mushrooms ; 19(11): 1009-1021, 2017.
Article in English | MEDLINE | ID: mdl-29345563

ABSTRACT

Imbalanced oxygen availability is detrimental to normal cell function. Oxygen-sensitive cells such as cardiomyoblasts experience severe irreversible pathophysiological damage under conditions of reduced oxygen availability, such as hypoxia. A number of natural therapeutic agents have been explored for their potential cytoprotective effects, of which medicinal mushrooms are an important source. Ganoderma lucidum, commonly known as lingzhi, is one such mushroom that has been elaborately studied for its potential pharmacological properties. In this study, aqueous and alcoholic extracts of a natural Himalayan variety of G. lucidum were evaluated for their efficiency as remedial agents in treating hypoxic injury to H9c2 cardiomyoblasts. The alcoholic extract of G. lucidum effectively restored cellular viability at a concentration of 600 µg/mL and aided in maintaining cellular redox balance under hypoxia. Substantial reduction in caspase-3 and -7 activation was observed with fluorescent-activated cell sorting. Alcoholic extract of G. lucidum minimized oxidative stress as indicated by measuring reactive oxygen species, lipid peroxidation, and reduced glutathione-to-oxidized glutathione ratio, and also by determining changes in hypoxia-inducible factor 1α and associated genes. To ascertain these positive outcomes of administration of G. lucidum extracts, certain phytoconstituents (nucleobases and flavonoids) were identified using high-performance thin-layer chromatography; antioxidant potential was also evaluated. Results indicated that both extracts contained notable quantities of nucleobases and flavonoids. The extracts also effected high free radical scavenging activities.


Subject(s)
Cardiotonic Agents/isolation & purification , Cardiotonic Agents/pharmacology , Complex Mixtures/isolation & purification , Complex Mixtures/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Reishi/chemistry , Animals , Cell Line , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Hypoxia , Oxidative Stress , Rats
14.
Exp Mol Med ; 49(12): e404, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29611541

ABSTRACT

This study investigates the therapeutic effect of a nanocurcumin formulation (NCF) containing nanocurcumin (NC) and pyrroloquinoline quinone (PQQ) on ameliorating hypoxia-induced stress in hypertrophied primary human ventricular cardiomyocytes (HVCM) under hypoxic conditions, as validated in a Sprague-Dawley rat model of chronic hypobaric hypoxia (cHH)-induced right ventricular hypertrophy (RVH). Based on our previous findings, here, we analyzed the improvement in the protective efficacy of NCF against mitochondrial damage. The electron transport chain Complexes' activities were analyzed as a chief operational center for mitochondrial homeostasis, along with key gene and protein markers for mitochondrial biogenesis, redox function, fatty acid oxidation, bio-energetic deficit and cell survival. NCF supplementation imparts cyto-protection from hypoxia-induced hypertrophy and damage in both in vitro and in vivo models while maintaining mitochondrial homeostasis better than NC and PQQ alone. This study proposes the use of NCF as a potential candidate molecule for imparting protection from high altitude-induced maladies in ascendants.


Subject(s)
Curcumin/chemistry , Hypertrophy/metabolism , Hypertrophy/physiopathology , Hypoxia/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Pyrroles/chemistry , Quinolines/chemistry , Animals , Cell Survival/drug effects , Cells, Cultured , Curcumin/pharmacology , Hypertrophy, Right Ventricular/metabolism , Male , Mitochondria/drug effects , Myocytes, Cardiac/drug effects , Pyrroles/pharmacology , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley
15.
J. physiol. biochem ; 72(4): 763-779, dic. 2016. graf, tab, ilus
Article in English | IBECS | ID: ibc-168382

ABSTRACT

Decline in oxygen availability experienced under hypobaric hypoxia (HH) mediates imbalance in lung fluid clearance and is a causative agent of acute lung injury. Here, we investigate the pathological events behind acute HH mediated lung injury and assess the therapeutic efficacy of nanocurcumin in its amelioration. We assess the protective efficacy of nanotized curcumin (nanocurcumin) in ameliorating HH induced lung injury and compare to curcumin. Rats exposed to acute HH (6, 12, 24, 48 and 72 h) were subjected to histopathology, blood-gas analysis and clinical biochemistry, cytokine response and redox damage. HH induced lung injury was analysed using markers of lung injury due to pulmonary vasoconstriction (ET-1/2/3 and endothelin receptors A and B) and trans-vascular fluid balance mediator (Na+/K+ ATPase). The protective efficacy of nanocurcumin was analysed by examination of Akt/Erk signalling cascade by western blot. HH induced lung injury was associated with discrete changes in blood analytes, differential circulatory cytokine response and severe pulmonary redox damages. Up-regulation of ET-1/2/3 and its receptors along with down-regulation of Na+/K+ ATPase confirmed defective pulmonary fluid clearance which promoted edema formation. Nanocurcumin treatment prevented lung edema formation and restored expression levels of ET-1/2/3 and its receptors while restoring the blood analytes, circulatory cytokines and pulmonary redox status better than curcumin. Modulation in Akt/Erk signalling pathway in rat lungs under HH confirmed the protective efficacy of nanocurcumin (AU)


No disponible


Subject(s)
Animals , Male , Rats , Acute Lung Injury/drug therapy , Hypoxia/drug therapy , Nanostructures/therapeutic use , Protective Agents/pharmacology , Gene Expression Regulation , Curcumin/pharmacology , Endothelins , Receptors, Endothelin , Extracellular Signal-Regulated MAP Kinases , Proto-Oncogene Proteins c-akt , Biomarkers/metabolism , Disease Models, Animal , Signal Transduction , Rats, Sprague-Dawley , Sodium-Potassium-Exchanging ATPase
16.
Hypoxia (Auckl) ; 4: 109-120, 2016.
Article in English | MEDLINE | ID: mdl-27800513

ABSTRACT

Muscle respiratory capacity decides the amount of exertion one's skeletal muscle can undergo, and endurance exercise is believed to increase it. There are also certain preconditioning methods by which muscle respiratory and exercise performance can be enhanced. In this study, preconditioning with ethyl 3,4-dihydroxybenzoate (EDHB), a prolyl hydroxylase domain enzyme inhibitor, has been investigated to determine its effect on aerobic metabolism and bioenergetics in skeletal muscle, thus facilitating boost in physical performance in a rat model. We observed that EDHB supplementation increases aerobic metabolism via upregulation of HIF-mediated GLUT1 and GLUT4, thus enhancing glucose uptake in muscles. There was also a twofold rise in the activity of enzymes of tricarboxylic acid (TCA) cycle and glycolysis, ie, hexokinase and phosphofructokinase. There was an increase in citrate synthase and succinate dehydrogenase activity, resulting in the rise in the levels of ATP due to enhanced Krebs cycle activity as substantiated by enhanced acetyl-CoA levels in EDHB-treated rats as compared to control group. Increased lactate dehydrogenase activity, reduced expression of monocarboxylate transporter 1, and increase in monocarboxylate transporter 4 suggest transport of lactate from muscle to blood. There was a concomitant decrease in plasma lactate, which might be due to enhanced transport of lactate from blood to the liver. This was further supported by the rise in liver pyruvate levels and liver glycogen levels in EDHB-supplemented rats as compared to control rats. These results suggest that EDHB supplementation leads to improved physical performance due to the escalation of aerobic respiration quotient, ie, enhanced muscle respiratory capacity.

17.
High Alt Med Biol ; 17(4): 342-352, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27626325

ABSTRACT

Nehra, Sarita, Varun Bhardwaj, Santosh Kar, and Deepika Saraswat. Chronic hypobaric hypoxia induces right ventricular hypertrophy and apoptosis in rats: therapeutic potential of nanocurcumin in improving adaptation. High Alt Med Biol. 17:342-352, 2016.-a sustained work load on the right heart on ascent to high altitudes promotes right ventricular hypertrophy (RVH), which eventually undergoes decompensation and promotes pathological damage. However, the exact set of events leading to damage remains unidentified. Curcumin is a natural antioxidant and antihypertrophic agent, but it has poor biostability. Nanotized curcumin (nanocurcumin) has emerged as a promising agent with improved biostability while retaining the therapeutic properties of curcumin. The present study aimed at analyzing the therapeutic properties of nanocurcumin in ameliorating cardiac damage due to chronic hypobaric hypoxia (HH)-induced RVH in comparison to curcumin. Sprague-Dawley rats exposed to HH (25,000 feet, effective oxygen fraction in air [FIO2] ∼0.08, temperature 28°C ± 1°C, relative humidity 55% ± 2% for 3, 7, 14, and 21 days) developed RVH with increased interstitial collagen content, Fulton's index, and cardiomyocyte cross-sectional area while upregulating atrial natriuretic peptide. Tissue damage due to apoptotic cell death was evident by cytochrome-c/caspase-3 activation and TUNEL assay. Concomitant modulation of cyclic guanosine monophosphate (cGMP)/cGK-1, calmodulin-dependent protein kinase II (CaMkinase II), and intracellular calcium levels with increased free radical-induced damage and lipid peroxidation further contributed to the right heart pathology. Nanocurcumin supplementation decreased HH-induced RVH and apoptosis while modulating cardiac cGMP/cGK-1 signaling, and maintaining CaMkinase II, intracellular calcium levels and redox status better than curcumin. Nanocurcumin-mediated antiapoptotic effects might have benefited residents and sojourners at high altitude in preventing hypoxic cardiac damage.


Subject(s)
Altitude Sickness/physiopathology , Antioxidants/pharmacology , Apoptosis/drug effects , Curcumin/pharmacology , Hypertrophy, Right Ventricular/drug therapy , Nanostructures/therapeutic use , Acclimatization/drug effects , Altitude Sickness/complications , Animals , Hypertrophy, Right Ventricular/etiology , Male , Oxidation-Reduction/drug effects , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
18.
J Physiol Biochem ; 72(4): 763-779, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27534650

ABSTRACT

Decline in oxygen availability experienced under hypobaric hypoxia (HH) mediates imbalance in lung fluid clearance and is a causative agent of acute lung injury. Here, we investigate the pathological events behind acute HH mediated lung injury and assess the therapeutic efficacy of nanocurcumin in its amelioration. We assess the protective efficacy of nanotized curcumin (nanocurcumin) in ameliorating HH induced lung injury and compare to curcumin. Rats exposed to acute HH (6, 12, 24, 48 and 72 h) were subjected to histopathology, blood-gas analysis and clinical biochemistry, cytokine response and redox damage. HH induced lung injury was analysed using markers of lung injury due to pulmonary vasoconstriction (ET-1/2/3 and endothelin receptors A and B) and trans-vascular fluid balance mediator (Na+/K+ ATPase). The protective efficacy of nanocurcumin was analysed by examination of Akt/Erk signalling cascade by western blot. HH induced lung injury was associated with discrete changes in blood analytes, differential circulatory cytokine response and severe pulmonary redox damages. Up-regulation of ET-1/2/3 and its receptors along with down-regulation of Na+/K+ ATPase confirmed defective pulmonary fluid clearance which promoted edema formation. Nanocurcumin treatment prevented lung edema formation and restored expression levels of ET-1/2/3 and its receptors while restoring the blood analytes, circulatory cytokines and pulmonary redox status better than curcumin. Modulation in Akt/Erk signalling pathway in rat lungs under HH confirmed the protective efficacy of nanocurcumin.


Subject(s)
Acute Lung Injury/drug therapy , Curcumin/pharmacology , Gene Expression Regulation/drug effects , Hypoxia/drug therapy , Nanostructures/therapeutic use , Protective Agents/pharmacology , Acute Lung Injury/etiology , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Animals , Biomarkers/metabolism , Disease Models, Animal , Endothelin-1/genetics , Endothelin-1/metabolism , Endothelin-2/genetics , Endothelin-2/metabolism , Endothelin-3/genetics , Endothelin-3/metabolism , Hypoxia/complications , Hypoxia/genetics , Hypoxia/pathology , Male , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Nanostructures/chemistry , Oxidation-Reduction/drug effects , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Endothelin A/genetics , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/genetics , Receptor, Endothelin B/metabolism , Signal Transduction , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism
19.
PLoS One ; 10(9): e0139121, 2015.
Article in English | MEDLINE | ID: mdl-26406246

ABSTRACT

Hypoxia induced oxidative stress incurs pathophysiological changes in hypertrophied cardiomyocytes by promoting translocation of p53 to mitochondria. Here, we investigate the cardio-protective efficacy of nanocurcumin in protecting primary human ventricular cardiomyocytes (HVCM) from hypoxia induced damages. Hypoxia induced hypertrophy was confirmed by FITC-phenylalanine uptake assay, atrial natriuretic factor (ANF) levels and cell size measurements. Hypoxia induced translocation of p53 was investigated by using mitochondrial membrane permeability transition pore blocker cyclosporin A (blocks entry of p53 to mitochondria) and confirmed by western blot and immunofluorescence. Mitochondrial damage in hypertrophied HVCM cells was evaluated by analysing bio-energetic, anti-oxidant and metabolic function and substrate switching form lipids to glucose. Nanocurcumin prevented translocation of p53 to mitochondria by stabilizing mitochondrial membrane potential and de-stressed hypertrophied HVCM cells by significant restoration in lactate, acetyl-coenzyme A, pyruvate and glucose content along with lactate dehydrogenase (LDH) and 5' adenosine monophosphate-activated protein kinase (AMPKα) activity. Significant restoration in glucose and modulation of GLUT-1 and GLUT-4 levels confirmed that nanocurcumin mediated prevention of substrate switching. Nanocurcumin prevented of mitochondrial stress as confirmed by c-fos/c-jun/p53 signalling. The data indicates decrease in p-300 histone acetyl transferase (HAT) mediated histone acetylation and GATA-4 activation as pharmacological targets of nanocurcumin in preventing hypoxia induced hypertrophy. The study provides an insight into propitious therapeutic effects of nanocurcumin in cardio-protection and usability in clinical applications.


Subject(s)
Antioxidants/pharmacology , Curcumin/pharmacology , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , AMP-Activated Protein Kinases/metabolism , Cell Hypoxia , Cells, Cultured , Curcumin/analogs & derivatives , Cyclosporine/pharmacology , Glucose/metabolism , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 2/metabolism , Heart Ventricles/cytology , Histone Acetyltransferases/metabolism , Homeostasis , Humans , Lactic Acid/metabolism , Membrane Potential, Mitochondrial , Mitochondria/drug effects , Myocytes, Cardiac/drug effects , Tumor Suppressor Protein p53/metabolism
20.
J. physiol. biochem ; 71(2): 239-251, jun. 2015.
Article in English | IBECS | ID: ibc-140532

ABSTRACT

Hypoxia-induced cardiomyocyte hypertrophy is evident; however, the distinct molecular mechanism underlying the oxidative stress-mediated damages to cardiomyocytes remains unknown. Curcumin(diferuloylmethane) is known for anti-hypertrophic effects, but low bioavailability makes it unsuitable to exploit its pharmacological properties. We assessed the efficacy of nanotized curcumin, i.e. nanocurcumin, in ameliorating hypoxia-induced hypertrophy and apoptosis in H9c2 cardiomyoblasts and compared it to curcumin. H9c2 cardiomyoblasts were challenged with 0.5 % oxygen, for 24 h to assess hypoxia-induced oxidative damage, hypertrophy and consequent apoptosis. The molecular mechanism underlying the protective efficacy of nanocurcumin was evaluated in regulating Raf-1/Erk-1/2 apoptosis by caspase-3/-7 pathway and oxidative stress. Nanocurcumin ameliorated hypoxia-induced hypertrophy and apoptosis in H9c2 cells significantly (p ≤ 0.01), by downregulating atrial natriuretic factor expression, caspase-3/-7 activation, oxidative stress and stabilizing hypoxia-inducible factor-1alfa (HIF-1alfa) better than curcumin. Nanocurcumin provides insight into its use as a potential candidate in curing hypoxia-induced cardiac pathologies by restoring oxidative balance


Subject(s)
Humans , Curcumin/pharmacokinetics , Myoblasts, Cardiac , Atrial Natriuretic Factor/pharmacokinetics , Nanoparticles , Protective Agents/pharmacokinetics , Hypoxia/physiopathology , Apoptosis , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL