Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; : e0219223, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37707204

ABSTRACT

The flavivirus non-structural protein 1 (NS1) is secreted from infected cells into the circulation and the serum levels correlate with disease severity. The effect of secreted NS1 (sNS1) on non-infected mammalian immune cells is largely unknown. Here, we expressed recombinant sNS1 proteins of tick-borne encephalitis virus (TBEV) and West Nile virus (WNV) and investigated their effects on dendritic cell (DC) effector functions. Murine bone marrow-derived DCs (BMDCs) showed reduced surface expression of co-stimulatory molecules and decreased release of pro-inflammatory cytokines when treated with sNS1 of TBEV or WNV prior to poly(I:C) stimulation. Transcriptional profiles of BMDCs that were sNS1-exposed prior to poly(I:C) stimulation showed two gene clusters that were downregulated by TBEV or WNV sNS1 and that were associated with innate and adaptive immune responses. Functionally, both sNS1 proteins modulated the capacity for BMDCs to induce specific T-cell responses as indicated by reduced IFN-γ levels in both CD4+ and CD8+ T cells after BMDC co-cultivation. In human monocyte-derived DCs, poly(I:C)-induced upregulation of co-stimulatory molecules and cytokine responses were even more strongly impaired by TBEV sNS1 or WNV sNS1 pretreatment than in the murine system. Our findings indicate that exogenous flaviviral sNS1 proteins interfere with DC-mediated stimulation of T cells, which is crucial for the initiation of cell-mediated adaptive immune responses in human flavivirus infections. Collectively, our data determine soluble flaviviral NS1 as a virulence factor responsible for a dampened immune response to flavivirus infections. IMPORTANCE The effective initiation of protective host immune responses controls the outcome of infection, and dysfunctional T-cell responses have previously been associated with symptomatic human flavivirus infections. We demonstrate that secreted flavivirus NS1 proteins modulate innate immune responses of uninfected bystander cells. In particular, sNS1 markedly reduced the capacity of dendritic cells to stimulate T-cell responses upon activation. Hence, by modulating cellular host responses that are required for effective antigen presentation and initiation of adaptive immunity, sNS1 proteins may contribute to severe outcomes of flavivirus disease.

2.
BMC Bioinformatics ; 24(1): 150, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069540

ABSTRACT

BACKGROUND: Gene expression profiling is a widely adopted method in areas like drug development or functional gene analysis. Microarray data of gene expression experiments is still commonly used and widely available for retrospective analyses. However, due to to changes of the underlying technologies data sets from different technologies are often difficult to compare and thus a multitude of already available data becomes difficult to use. We present a web application that abstracts away mathematical and programmatical details in order to enable a convenient and customizable analysis of microarray data for large-scale reproducibility studies. In addition, the web application provides a feature that allows easy access to large microarray repositories. RESULTS: Our web application consists of three basic steps which are necessary for a differential gene expression analysis as well as Gene Ontology (GO) enrichment analysis and the comparison of multiple analysis results. Genealyzer can handle Affymetrix data as well as one-channel and two-channel Agilent data. All steps are visualized with meaningful plots. The application offers flexible analysis while being intuitively operable. CONCLUSIONS: Our web application provides a unified platform for analysing microarray data, while allowing users to compare the results of different technologies and organisms. Beyond reproducibility, this also offers many possibilities for gaining further insights from existing study data, especially since data from different technologies or organisms can also be compared. The web application can be accessed via this URL: https://genealyzer.item.fraunhofer.de/ . Login credentials can be found at the end.


Subject(s)
Gene Expression Profiling , Software , Oligonucleotide Array Sequence Analysis/methods , Reproducibility of Results , Retrospective Studies , Gene Expression Profiling/methods , Gene Expression , Internet
3.
Sci Rep ; 12(1): 7170, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35505053

ABSTRACT

Due to the overall high costs, technical replicates are usually omitted in RNA-seq experiments, but several methods exist to generate them artificially. Bootstrapping reads from FASTQ-files has recently been used in the context of other NGS analyses and can be used to generate artificial technical replicates. Bootstrapping samples from the columns of the expression matrix has already been used for DNA microarray data and generates a new artificial replicate of the whole experiment. Mixing data of individual samples has been used for data augmentation in machine learning. The aim of this comparison is to evaluate which of these strategies are best suited to study the reproducibility of differential expression and gene-set enrichment analysis in an RNA-seq experiment. To study the approaches under controlled conditions, we performed a new RNA-seq experiment on gene expression changes upon virus infection compared to untreated control samples. In order to compare the approaches for artificial replicates, each of the samples was sequenced twice, i.e. as true technical replicates, and differential expression analysis and GO term enrichment analysis was conducted separately for the two resulting data sets. Although we observed a high correlation between the results from the two replicates, there are still many genes and GO terms that would be selected from one replicate but not from the other. Cluster analyses showed that artificial replicates generated by bootstrapping reads produce it p values and fold changes that are close to those obtained from the true data sets. Results generated from artificial replicates with the approaches of column bootstrap or mixing observations were less similar to the results from the true replicates. Furthermore, the overlap of results among replicates generated by column bootstrap or mixing observations was much stronger than among the true replicates. Artificial technical replicates generated by bootstrapping sequencing reads from FASTQ-files are better suited to study the reproducibility of results from differential expression and GO term enrichment analysis in RNA-seq experiments than column bootstrap or mixing observations. However, FASTQ-bootstrapping is computationally more expensive than the other two approaches. The FASTQ-bootstrapping may be applicable to other applications of high-throughput sequencing.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , RNA-Seq , Reproducibility of Results , Sequence Analysis, RNA/methods
4.
Int J Mol Sci ; 23(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35269624

ABSTRACT

To better understand the molecular basis of respiratory diseases of viral origin, high-throughput gene-expression data are frequently taken by means of DNA microarray or RNA-seq technology. Such data can also be useful to classify infected individuals by molecular signatures in the form of machine-learning models with genes as predictor variables. Early diagnosis of patients by molecular signatures could also contribute to better treatments. An approach that has rarely been considered for machine-learning models in the context of transcriptomics is data augmentation. For other data types it has been shown that augmentation can improve classification accuracy and prevent overfitting. Here, we compare three strategies for data augmentation of DNA microarray and RNA-seq data from two selected studies on respiratory diseases of viral origin. The first study involves samples of patients with either viral or bacterial origin of the respiratory disease, the second study involves patients with either SARS-CoV-2 or another respiratory virus as disease origin. Specifically, we reanalyze these public datasets to study whether patient classification by transcriptomic signatures can be improved when adding artificial data for training of the machine-learning models. Our comparison reveals that augmentation of transcriptomic data can improve the classification accuracy and that fewer genes are necessary as explanatory variables in the final models. We also report genes from our signatures that overlap with signatures presented in the original publications of our example data. Due to strict selection criteria, the molecular role of these genes in the context of respiratory infectious diseases is underlined.


Subject(s)
COVID-19/genetics , Gene Expression Profiling/methods , Machine Learning , Neural Networks, Computer , RNA-Seq/methods , Transcriptome/genetics , Algorithms , COVID-19/classification , COVID-19/virology , Gene Ontology , Humans , Reproducibility of Results , SARS-CoV-2/physiology
5.
Comput Biol Chem ; 94: 107555, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34364046

ABSTRACT

Next-generation sequencing is regularly used to identify viral sequences in DNA or RNA samples of infected hosts. A major step of most pipelines for virus detection is to map sequence reads against known virus genomes. Due to small differences between the sequences of related viruses, and due to several biological or technical errors, mapping underlies uncertainties. As a consequence, the resulting list of detected viruses can lack robustness. A new approach for generating artificial sequencing reads together with a strategy of resampling from the original findings is proposed that can help to assess the robustness of the originally identified list of viruses. From the original mapping result in form of a SAM file, a set of statistical distributions are derived. These are used in the resampling pipeline to generate new artificial reads which are again mapped versus the reference genomes. By summarizing the resampling procedure, the analyst receives information about whether the presence of a particular virus in the sample gains or losses evidence, and thus about the robustness of the original mapping list but also that of individual viruses in this list. To judge robustness, several indicators are derived from the resampling procedure such as the correlation between original and resampling read counts, or the statistical detection of outliers in the differences of read counts. Additionally, graphical illustrations of read count shifts via Sankey diagrams are provided. To demonstrate the use of the new approach, the resampling approach is applied to three real-world data samples, one of them with laboratory-confirmed Influenza sequences, and to artificially generated data where virus sequences have been spiked into the sequencing data of a host. By applying the resampling pipeline, several viruses drop from the original list while new viruses emerge, showing robustness of those viruses that remain in the list. The evaluation of the new approach shows that the resampling approach is helpful to analyze the viral content of a biological sample, to rate the robustness of original findings and to better show the overall distribution of findings. The method is also applicable to other virus detection pipelines based on read mapping.


Subject(s)
Orthomyxoviridae/isolation & purification , High-Throughput Nucleotide Sequencing , Humans , Orthomyxoviridae/genetics
6.
Bioinformatics ; 37(8): 1068-1075, 2021 05 23.
Article in English | MEDLINE | ID: mdl-33135067

ABSTRACT

MOTIVATION: High-throughput sequencing data can be affected by different technical errors, e.g. from probe preparation or false base calling. As a consequence, reproducibility of experiments can be weakened. In virus metagenomics, technical errors can result in falsely identified viruses in samples from infected hosts. We present a new resampling approach based on bootstrap sampling of sequencing reads from FASTQ-files in order to generate artificial replicates of sequencing runs which can help to judge the robustness of an analysis. In addition, we evaluate a mixture model on the distribution of read counts per virus to identify potentially false positive findings. RESULTS: The evaluation of our approach on an artificially generated dataset with known viral sequence content shows in general a high reproducibility of uncovering viruses in sequencing data, i.e. the correlation between original and mean bootstrap read count was highly correlated. However, the bootstrap read counts can also indicate reduced or increased evidence for the presence of a virus in the biological sample. We also found that the mixture-model fits well to the read counts, and furthermore, it provides a higher accuracy on the original or on the bootstrap read counts than on the difference between both. The usefulness of our methods is further demonstrated on two freely available real-world datasets from harbor seals. AVAILABILITY AND IMPLEMENTATION: We provide a Phyton tool, called RESEQ, available from https://github.com/babaksaremi/RESEQ that allows efficient generation of bootstrap reads from an original FASTQ-file. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Metagenomics , Viruses , Algorithms , High-Throughput Nucleotide Sequencing , Reproducibility of Results , Sequence Analysis, DNA , Software , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL