Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Nat Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956196

ABSTRACT

Preclinical evidence demonstrates that senescent cells accumulate with aging and that senolytics delay multiple age-related morbidities, including bone loss. Thus, we conducted a phase 2 randomized controlled trial of intermittent administration of the senolytic combination dasatinib plus quercetin (D + Q) in postmenopausal women (n = 60 participants). The primary endpoint, percentage changes at 20 weeks in the bone resorption marker C-terminal telopeptide of type 1 collagen (CTx), did not differ between groups (median (interquartile range), D + Q -4.1% (-13.2, 2.6), control -7.7% (-20.1, 14.3); P = 0.611). The secondary endpoint, percentage changes in the bone formation marker procollagen type 1 N-terminal propeptide (P1NP), increased significantly (relative to control) in the D + Q group at both 2 weeks (+16%, P = 0.020) and 4 weeks (+16%, P = 0.024), but was not different from control at 20 weeks (-9%, P = 0.149). No serious adverse events were observed. In exploratory analyses, the skeletal response to D + Q was driven principally by women with a high senescent cell burden (highest tertile for T cell p16 (also known as CDKN2A) mRNA levels) in which D + Q concomitantly increased P1NP (+34%, P = 0.035) and reduced CTx (-11%, P = 0.049) at 2 weeks, and increased radius bone mineral density (+2.7%, P = 0.004) at 20 weeks. Thus, intermittent D + Q treatment did not reduce bone resorption in the overall group of postmenopausal women. However, our exploratory analyses indicate that further studies are needed testing the hypothesis that the underlying senescent cell burden may dictate the clinical response to senolytics. ClinicalTrials.gov identifier: NCT04313634 .

2.
J Clin Invest ; 134(12)2024 May 16.
Article in English | MEDLINE | ID: mdl-38753433

ABSTRACT

Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells were key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings established contextual roles of p21+ versus p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.


Subject(s)
Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21 , Fracture Healing , Neutrophils , Animals , Male , Mice , Biomarkers/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Mesenchymal Stem Cells/metabolism , Neutrophils/metabolism , Neutrophils/pathology , Female
3.
iScience ; 27(4): 109584, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38623337

ABSTRACT

Peptidyl arginine deiminases (PADIs) catalyze protein citrullination, a post-translational conversion of arginine to citrulline. The most widely expressed member of this family, PADI2, regulates cellular processes that impact several diseases. We hypothesized that we could gain new insights into PADI2 function through a systematic evolutionary and structural analysis. Here, we identify 20 positively selected PADI2 residues, 16 of which are structurally exposed and maintain PADI2 interactions with cognate proteins. Many of these selected residues reside in non-catalytic regions of PADI2. We validate the importance of a prominent loop in the middle domain that encompasses PADI2 L162, a residue under positive selection. This site is essential for interaction with the transcription elongation factor (P-TEFb) and mediates the active transcription of the oncogenes c-MYC, and CCNB1, as well as impacting cellular proliferation. These insights could be key to understanding and addressing the role of the PADI2 c-MYC axis in cancer progression.

4.
bioRxiv ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38370844

ABSTRACT

Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells are key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings establish contextual roles of p21+ vs p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.

5.
Gastroenterology ; 166(4): 631-644.e17, 2024 04.
Article in English | MEDLINE | ID: mdl-38211712

ABSTRACT

BACKGROUND & AIMS: The incidence of Crohn's disease (CD) continues to increase worldwide. The contribution of CD4+ cell populations remains to be elucidated. We aimed to provide an in-depth transcriptional assessment of CD4+ T cells driving chronic inflammation in CD. METHODS: We performed single-cell RNA-sequencing in CD4+ T cells isolated from ileal biopsies of patients with CD compared with healthy individuals. Cells underwent clustering analysis, followed by analysis of gene signaling networks. We overlapped our differentially expressed genes with publicly available microarray data sets and performed functional in vitro studies, including an in vitro suppression assay and organoid systems, to model gene expression changes observed in CD regulatory T (Treg) cells and to test predicted therapeutics. RESULTS: We identified 5 distinct FOXP3+ regulatory Treg subpopulations. Tregs isolated from healthy controls represent the origin of pseudotemporal development into inflammation-associated subtypes. These proinflammatory Tregs displayed a unique responsiveness to tumor necrosis factor-α signaling with impaired suppressive activity in vitro and an elevated cytokine response in an organoid coculture system. As predicted in silico, the histone deacetylase inhibitor vorinostat normalized gene expression patterns, rescuing the suppressive function of FOXP3+ cells in vitro. CONCLUSIONS: We identified a novel, proinflammatory FOXP3+ T cell subpopulation in patients with CD and developed a pipeline to specifically target these cells using the US Food and Drug Administration-approved drug vorinostat.


Subject(s)
Crohn Disease , Humans , Crohn Disease/drug therapy , Crohn Disease/genetics , Crohn Disease/metabolism , Vorinostat/metabolism , T-Lymphocytes, Regulatory/metabolism , Inflammation/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
7.
Am J Sports Med ; 52(1): 96-108, 2024 01.
Article in English | MEDLINE | ID: mdl-38164687

ABSTRACT

BACKGROUND: Meniscal allograft transplantation (MAT) is an accepted and effective treatment option in the context of unsalvageable menisci, particularly in young and active patients. It has been shown to reduce pain and improve knee function in previously symptomatic patients. However, there is still limited knowledge about the long-term survival rates of allografts, the durability of clinical results, and the influence of patient-specific parameters, such as leg alignment, tibial slope, and preoperative International Cartilage Regeneration & Joint Preservation Society (ICRS) grade. PURPOSE: To determine (1) the long-term clinical success rate after MAT with bony fixation in a large, single-center cohort of consecutive patients, and (2) if patient-specific and procedural variables influence the clinical, anatomic, and subjective outcomes and risk of failure. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: Data on 185 consecutive knees undergoing MAT in a single institution were prospectively collected and screened for inclusion in this study. The minimum follow-up time was 2 years. Radiographic variables (ICRS grade and Kellgren-Lawrence grade) were assessed preoperatively and at follow-up. Subjective patient-reported outcome measures (PROMs) (Lysholm score, Knee injury and Osteoarthritis Outcome Score [KOOS] including subscores, International Knee Documentation Committee [IKDC] score, and visual analog scale [VAS] score) were collected preoperatively and at follow-up. Clinical failure was defined as revision surgery due to graft failure or conversion to total knee arthroplasty. Anatomic failure was considered a tear covering >20% of the allograft, any peripheral tear, and unstable peripheral fixation leading to dislocation of the graft. Subjective failure was defined as Lysholm score ≤65. Preoperative tibial slope and leg alignment were assessed. Survival analyses were performed using the Kaplan-Meier estimate. Univariate and multivariate analyses were performed to determine risk factors for clinical and anatomic failure. RESULTS: A total of 157 knees met inclusion criteria. After a mean follow-up time of 7 ± 3.5 years, 127 (80.9%) knees were free of clinical, anatomic, and subjective failure. Fourteen (8.9%) knees experienced clinical failure, 26 (16.6%) knees were identified as having experienced anatomic failure, and 13 (8.3%) patients experienced subjective failure with a reported Lysholm score of ≤65 at a mean follow-up of 7 years. Concurrent osteochondral allograft transplantation was identified as a predictor of both clinical (hazard ratio [HR], 4.55; 95% CI, 1.46-14.17; P = .009) and anatomic (HR, 3.05; 95% CI, 1.34-6.92; P = .008) failure. Cartilage damage of ICRS grade 3 or 4 of the index compartment conveyed an increased risk for clinical (HR, 3.41; 95% CI, 1.05-11.01; P = .04) and anatomic (HR, 3.04; 95% CI, 1.31-7.11; P = .01) failure. High-grade cartilage damage preoperatively (HR, 10.67; 95% CI, 1.037-109.768; P = .046), patient age >25 years (HR, 5.44; 95% CI, 0.120-246.070; P = .384), and a body mass index >30 (HR, 2.24; 95% CI, 0.748-6.705; P = .149) were associated with subjective failure. PROMs including KOOS and IKDC were significantly improved at final follow-up compared with preoperative scores across all measurements (P < .005). CONCLUSION: MAT showed good to excellent clinical results at a mean follow-up of 7 years. Low ICRS lesion grade was associated with a higher clinical and anatomic survival rate. Patients with concurrent OCA transplantation are at a higher risk of clinical and anatomic failure, but still report significantly improved PROMs. These results suggest that MAT has a lasting beneficial effect both in isolation and in complex cases with ≥1 concurrent procedures.


Subject(s)
Menisci, Tibial , Meniscus , Humans , Adult , Menisci, Tibial/transplantation , Survivorship , Follow-Up Studies , Case-Control Studies , Prognosis , Knee Joint/surgery , Allografts/transplantation
8.
Aging Cell ; 23(2): e14038, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37961856

ABSTRACT

Calorie restriction (CR) with adequate nutrient intake is a potential geroprotective intervention. To advance this concept in humans, we tested the hypothesis that moderate CR in healthy young-to-middle-aged individuals would reduce circulating biomarkers of cellular senescence, a fundamental mechanism of aging and aging-related conditions. Using plasma specimens from the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE™) phase 2 study, we found that CR significantly reduced the concentrations of several senescence biomarkers at 12 and 24 months compared to an ad libitum diet. Using machine learning, changes in biomarker concentrations emerged as important predictors of the change in HOMA-IR and insulin sensitivity index at 12 and 24 months, and the change in resting metabolic rate residual at 12 months. Finally, using adipose tissue RNA-sequencing data from a subset of participants, we observed a significant reduction in a senescence-focused gene set in response to CR at both 12 and 24 months compared to baseline. Our results advance the understanding of the effects of CR in humans and further support a link between cellular senescence and metabolic health.


Subject(s)
Aging , Caloric Restriction , Middle Aged , Humans , Cellular Senescence/genetics , Energy Intake , Biomarkers
9.
bioRxiv ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38106149

ABSTRACT

Senescent cells drive age-related tissue dysfunction via the induction of a chronic senescenceassociated secretory phenotype (SASP). The cyclin-dependent kinase inhibitors p21Cip1 and p16Ink4a have long served as markers of cellular senescence. However, their individual roles remain incompletely elucidated. Thus, we conducted a comprehensive examination of multiple single-cell RNA sequencing (scRNA-seq) datasets spanning both murine and human tissues during aging. Our analysis revealed that p21Cip1 and p16Ink4a transcripts demonstrate significant heterogeneity across distinct cell types and tissues, frequently exhibiting a lack of co-expression. Moreover, we identified tissue-specific variations in SASP profiles linked to p21Cip1 or p16Ink4a expression. Our study underscores the extraordinary diversity of cellular senescence and the SASP, emphasizing that these phenomena are inherently cell- and tissue-dependent. However, a few SASP factors consistently contribute to a shared "core" SASP. These findings highlight the need for a more nuanced investigation of senescence across a wide array of biological contexts.

10.
Cells ; 12(24)2023 12 07.
Article in English | MEDLINE | ID: mdl-38132107

ABSTRACT

The high prevalence of sarcopenia in an aging population has an underestimated impact on quality of life by increasing the risk of falls and subsequent hospitalization. Unfortunately, the application of the major established key therapeutic-physical activity-is challenging in the immobile and injured sarcopenic patient. Consequently, novel therapeutic directions are needed. The transcription factor Forkhead-Box-Protein O3 (FOXO3) may be an option, as it and its targets have been observed to be more highly expressed in sarcopenic muscle. In such catabolic situations, Foxo3 induces the expression of two muscle specific ubiquitin ligases (Atrogin-1 and Murf-1) via the PI3K/AKT pathway. In this review, we particularly evaluate the potential of Foxo3-targeted gene therapy. Foxo3 knockdown has been shown to lead to increased muscle cross sectional area, through both the AKT-dependent and -independent pathways and the reduced impact on the two major downstream targets Atrogin-1 and Murf-1. Moreover, a Foxo3 reduction suppresses apoptosis, activates satellite cells, and initiates their differentiation into muscle cells. While this indicates a critical role in muscle regeneration, this mechanism might exhaust the stem cell pool, limiting its clinical applicability. As systemic Foxo3 knockdown has also been associated with risks of inflammation and cancer progression, a muscle-specific approach would be necessary. In this review, we summarize the current knowledge on Foxo3 and conceptualize a specific and targeted therapy that may circumvent the drawbacks of systemic Foxo3 knockdown. This approach presumably would limit the side effects and enable an activity-independent positive impact on skeletal muscle.


Subject(s)
Sarcopenia , Humans , Aged , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Forkhead Transcription Factors/metabolism , Insulin-Like Growth Factor I , Quality of Life , Signal Transduction/genetics , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism
11.
Orthop J Sports Med ; 11(11): 23259671231209666, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37954864

ABSTRACT

Background: Little is known about the specific risk of knee injuries due to trampoline accidents in adults compared with children. Purpose: To investigate the differences in trampoline-related knee injuries between children and adults and identify risk factors and protective strategies to reduce injury incidence. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Data on 229 consecutive patients treated for trampoline-related knee injuries in a single institution were prospectively collected, analyzed, and included. Risk factors, injury patterns, and clinical treatments were compared between skeletally immature and skeletally mature patients. Logistic regression was used to determine the odds ratios for specific risk factors for trampoline-related injuries-including body mass index (BMI), trauma mechanism, patient age, and accident location. Results: A total of 229 patients met the inclusion criteria; 118 (52%) patients (women, 54.2%; mean age, 8.5 ± 4.1 years) were skeletally immature at the time of injury, and 111 (48%) patients (women, 72%; mean age, 31.9 ± 13.1 years) had closed physes on initial presentation and were classified as skeletally mature. A total of 63 patients (28%) required surgical treatment for their knee injury. Overall, 50 anterior cruciate ligament (ACL) tears, 46 fractures, 39 meniscal tears, 31 ligamentous tears other than ACL, 22 patellar dislocations, and 38 soft tissue injuries, such as lacerations, were recorded. Skeletally mature patients had 7.8 times higher odds (95% CI, 1.6-46.8; P < .05) and 19.1 increased odds (95% CI, 5.5-74.9; P < .05) of an ACL tear or another ligamentous tear, respectively, compared with skeletally immature patients. Patients who described instability and giving way of the knee as relevant trauma mechanisms had odds of 3.11 (95% CI, 0.9-14.8; P < .05) of an ACL tear compared with other trauma mechanisms. Meniscal tears were observed more frequently in the skeletally mature cohort (P < .05). An elevated BMI was associated with a significantly higher relative risk of an ACL tear, a ligamentous tear other than the ACL, and an injury requiring surgery. A third of surgically treated patients were subject to a delayed diagnosis. Conclusion: Adults had a significantly increased risk of ligamentous and meniscal tears and required operative intervention more often than skeletally immature individuals. Elevated BMI, age, and instability events in terms of trauma mechanism conveyed an increased risk of structural damage to the knee.

12.
Biomed Pharmacother ; 168: 115697, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864892

ABSTRACT

Non-unions represent a major complication in trauma and orthopedic surgery. Many factors contribute to bone regeneration, out of which an adequate vascularization has been recognized as crucial. The phosphodiesterase-3 (PDE-3) inhibitor cilostazol has been shown to exert pro-angiogenic and pro-osteogenic effects in a variety of preclinical studies. Hence, we herein investigated the effects of cilostazol on bone regeneration in an atrophic non-union model in mice. For this purpose, a 1.8 mm femoral segmental defect was stabilized by pin-clip fixation and the animals were treated daily with 30 mg/kg body weight cilostazol or saline (control) per os. At 2, 5 and 10 weeks after surgery the healing of femora was analyzed by X-ray, biomechanics, photoacoustic imaging, and micro-computed tomography (µCT). To investigate the cellular composition and the growth factor expression of the callus tissue additional histological, immunohistochemical and Western blot analyses were performed. Cilostazol-treated animals showed increased bone formation within the callus, resulting in an enhanced bending stiffness when compared to controls. This was associated with a more pronounced expression of vascular endothelial growth factor (VEGF), a higher number of CD31-positive microvessels and an increased oxygen saturation within the callus tissue. Furthermore, cilostazol induced higher numbers of tartrate-resistant acidic phosphate (TRAP)-positive osteoclasts and CD68-positive macrophages. Taken together, these findings demonstrate that cilostazol is a promising drug candidate for the adjuvant treatment of atrophic non-unions in clinical practice.


Subject(s)
Fracture Healing , Vascular Endothelial Growth Factor A , Mice , Animals , Cilostazol/pharmacology , Vascular Endothelial Growth Factor A/metabolism , X-Ray Microtomography , Bone Regeneration , Phosphodiesterase Inhibitors/pharmacology
13.
Nature ; 622(7983): 627-636, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821702

ABSTRACT

Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP)1. Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated2. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence. During apoptosis, widespread mitochondrial outer membrane permeabilization (MOMP) commits a cell to die3. Here we find that MOMP occurring in a subset of mitochondria is a feature of cellular senescence. This process, called minority MOMP (miMOMP), requires BAX and BAK macropores enabling the release of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA in turn activates the cGAS-STING pathway, a major regulator of the SASP. We find that inhibition of MOMP in vivo decreases inflammatory markers and improves healthspan in aged mice. Our results reveal that apoptosis and senescence are regulated by similar mitochondria-dependent mechanisms and that sublethal mitochondrial apoptotic stress is a major driver of the SASP. We provide proof-of-concept that inhibition of miMOMP-induced inflammation may be a therapeutic route to improve healthspan.


Subject(s)
Apoptosis , Cellular Senescence , Cytosol , DNA, Mitochondrial , Mitochondria , Animals , Mice , Cytosol/metabolism , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Transmembrane Permeability-Driven Necrosis , Proof of Concept Study , Inflammation/metabolism , Phenotype , Longevity , Healthy Aging
14.
JBMR Plus ; 7(10): e10797, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37808391

ABSTRACT

Estrogen regulates bone mass in women and men, but the underlying cellular mechanisms of estrogen action on bone remain unclear. Although both estrogen receptor (ER)α and ERß are expressed in bone cells, ERα is the dominant receptor for skeletal estrogen action. Previous studies using either global or cell-specific ERα deletion provided important insights, but each of these approaches had limitations. Specifically, either high circulating sex steroid levels in global ERα knockout mice or the effects of deletion of ERα during growth and development in constitutive cell-specific knockout mice have made it difficult to clearly define the role of ERα in specific cell types in the adult skeleton. We recently generated and characterized mice with tamoxifen-inducible ERα deletion in osteocytes driven by the 8-kb Dmp1 promoter (ERαΔOcy mice), revealing detrimental effects of osteocyte-specific ERα deletion on trabecular bone volume (-20.1%) and bone formation rate (-18.9%) in female, but not male, mice. Here, we developed and characterized analogous mice with inducible ERα deletion in osteoclasts using the Cathepsin K promoter (ERαΔOcl mice). In a study design identical to that with the previously described ERαΔOcy mice, adult female, but not male, ERαΔOcl mice showed a borderline (-10.2%, p = 0.084) reduction in trabecular bone volume, no change in osteoclast numbers, but a significant increase in serum CTx levels, consistent with increased osteoclast activity. These findings in ERαΔOcl mice differ from previous studies of constitutive osteoclast-specific ERα deletion, which led to clear deficits in trabecular bone and increased osteoclast numbers. Collectively, these data indicate that in adult mice, estrogen action in the osteocyte is likely more important than via the osteoclast and that ERα deletion in osteoclasts from conception onward has more dramatic skeletal effects than inducible osteoclastic ERα deletion in adult mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

15.
JBMR Plus ; 7(10): e10795, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37808401

ABSTRACT

The regulation of bone mineral density (BMD) is highly influenced by genetics and age. Although genome-wide association studies (GWAS) for BMD have uncovered many genes through their proximity to associated variants (variant nearest-neighbor [VNN] genes), the cell-specific mechanisms of each VNN gene remain unclear. This is primarily due to the inability to prioritize these genes by cell type and age-related expression. Using age-related transcriptomics, we found that the expression of many VNN genes was upregulated in the bone and marrow from aged mice. Candidate genes from GWAS were investigated using single-cell RNA-sequencing (scRNA-seq) datasets to enrich for cell-specific expression signatures. VNN candidate genes are highly enriched in osteo-lineage cells, osteocytes, hypertrophic chondrocytes, and Lepr+ mesenchymal stem cells. These data were used to generate a "blueprint" for Cre-loxp mouse line selection for functional validation of candidate genes and further investigation of their role in BMD maintenance throughout aging. In VNN-gene-enriched cells, Sparc, encoding the extracellular matrix (ECM) protein osteonectin, was robustly expressed. This, along with expression of numerous other ECM genes, indicates that many VNN genes likely have roles in ECM deposition by osteoblasts. Overall, we provide data supporting streamlined translation of GWAS candidate genes to potential novel therapeutic targets for the treatment of osteoporosis. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

16.
Cells ; 12(17)2023 08 29.
Article in English | MEDLINE | ID: mdl-37681900

ABSTRACT

Sarcopenia has a high prevalence among the aging population. Sarcopenia is of tremendous socioeconomic importance because it can lead to falls and hospitalization, subsequently increasing healthcare costs while limiting quality of life. In sarcopenic muscle fibers, the E3 ubiquitin ligase F-Box Protein 32 (Fbxo32) is expressed at substantially higher levels, driving ubiquitin-proteasomal muscle protein degradation. As one of the key regulators of muscular equilibrium, the transcription factor Forkhead Box O3 (FOXO3) can increase the expression of Fbxo32, making it a possible target for the regulation of this detrimental pathway. To test this hypothesis, murine C2C12 myoblasts were transduced with AAVs carrying a plasmid for four specific siRNAs against Foxo3. Successfully transduced myoblasts were selected via FACS cell sorting to establish single clone cell lines. Sorted myoblasts were further differentiated into myotubes and stained for myosin heavy chain (MHC) by immunofluorescence. The resulting area was calculated. Myotube contractions were induced by electrical stimulation and quantified. We found an increased Foxo3 expression in satellite cells in human skeletal muscle and an age-related increase in Foxo3 expression in older mice in silico. We established an in vitro AAV-mediated FOXO3 knockdown on protein level. Surprisingly, the myotubes with FOXO3 knockdown displayed a smaller myotube size and a lower number of nuclei per myotube compared to the control myotubes (AAV-transduced with a functionless control plasmid). During differentiation, a lower level of FOXO3 reduced the expression Fbxo32 within the first three days. Moreover, the expression of Myod1 and Myog via ATM and Tp53 was reduced. Functionally, the Foxo3 knockdown myotubes showed a higher contraction duration and time to peak. Early Foxo3 knockdown seems to terminate the initiation of differentiation due to lack of Myod1 expression, and mediates the inhibition of Myog. Subsequently, the myotube size is reduced and the excitability to electrical stimulation is altered.


Subject(s)
Forkhead Box Protein O3 , MyoD Protein , Myogenin , Quality of Life , Sarcopenia , Aged , Animals , Humans , Mice , Forkhead Box Protein O3/genetics , Muscle Fibers, Skeletal , Muscle, Skeletal , Myoblasts , Myogenin/metabolism , MyoD Protein/metabolism
17.
J Bone Miner Metab ; 41(6): 741-751, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37407738

ABSTRACT

INTRODUCTION: The selective androgen receptor modulator ligandrol (LGD-4033 or VK5211) has been shown to improve muscle tissue. In the present study, the effect of ligandrol on bone tissue was investigated in ovariectomized rat model. MATERIALS AND METHODS: Three-month-old Sprague Dawley rats were either ovariectomized (OVX, n = 60) or left intact (NON-OVX, n = 15). After 9 weeks, OVX rats were divided into four groups: untreated OVX (n = 15) group and three OVX groups (each of 15 rats) treated with ligandrol orally at doses of 0.03, 0.3, or 3 mg/kg body weight. After five weeks, lumbar vertebral bodies (L), tibiae, and femora were examined using micro-computed tomographical, biomechanical, ashing, and gene expression analyses. RESULTS: In the 3-mg ligandrol group, bone structural properties were improved (trabecular number: 38 ± 8 vs. 35 ± 7 (femur), 26 ± 7 vs. 22 ± 6 (L), 12 ± 5 vs. 6 ± 3 (tibia) and serum phosphorus levels (1.81 ± 0.17 vs.1.41 ± 0.17 mmol/l), uterus (0.43 ± 0.04 vs. 0.11 ± 0.02 g), and heart (1.13 ± 0.11 vs. 1.01 ± 0.08 g) weights were increased compared to the OVX group. Biomechanical parameters were not changed. Low and medium doses did not affect bone tissue and had fewer side effects. Body weight and food intake were not affected by ligandrol; OVX led to an increase in these parameters and worsened all bone parameters. CONCLUSION: Ligandrol at high dose showed a subtle anabolic effect on structural properties without any improvement in biomechanical properties of osteoporotic bones. Considering side effects of ligandrol at this dose, its further investigation for the therapy of postmenopausal osteoporosis should be reevaluated.


Subject(s)
Osteoporosis , Receptors, Androgen , Female , Humans , Rats , Animals , Rats, Sprague-Dawley , Bone Density , Osteoporosis/drug therapy , Osteoporosis/metabolism , Body Weight , Androgens , Ovariectomy
18.
Nat Commun ; 14(1): 4587, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524694

ABSTRACT

Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we apply mass cytometry by time-of-flight using carefully validated antibodies to analyze senescent cells at single-cell resolution. We use multiple criteria to identify senescent mesenchymal cells that are growth-arrested and resistant to apoptosis. These p16 + Ki67-BCL-2+ cells are highly enriched for senescence-associated secretory phenotype and DNA damage markers, are strongly associated with age, and their percentages are increased in late osteoblasts/osteocytes and CD24high osteolineage cells. Moreover, both late osteoblasts/osteocytes and CD24high osteolineage cells are robustly cleared by genetic and pharmacologic senolytic therapies in aged mice. Following isolation, CD24+ skeletal cells exhibit growth arrest, senescence-associated ß-galactosidase positivity, and impaired osteogenesis in vitro. These studies thus provide an approach using multiplexed protein profiling to define senescent mesenchymal cells in vivo and identify specific skeletal cell populations cleared by senolytics.


Subject(s)
Cellular Senescence , Senotherapeutics , Mice , Animals , Cellular Senescence/genetics , Aging/genetics , Osteoblasts , Skeleton
19.
JBMR Plus ; 7(6): e10745, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37283656

ABSTRACT

Aging is a major risk factor for most chronic diseases, including osteoporosis, and is characterized by an accumulation of senescent cells in various tissues. MicroRNAs (miRNAs) are critical regulators of bone aging and cellular senescence. Here, we report that miR-19a-3p decreases with age in bone samples from mice as well as in posterior iliac crest bone biopsies of younger versus older healthy women. miR-19a-3p also decreased in mouse bone marrow stromal cells following induction of senescence using etoposide, H2O2, or serial passaging. To explore the transcriptomic effects of miR-19a-3p, we performed RNA sequencing of mouse calvarial osteoblasts transfected with control or miR-19a-3p mimics and found that miR-19a-3p overexpression significantly altered the expression of various senescence, senescence-associated secretory phenotype-related, and proliferation genes. Specifically, miR-19a-3p overexpression in nonsenescent osteoblasts significantly suppressed p16 Ink4a and p21 Cip1 gene expression and increased their proliferative capacity. Finally, we established a novel senotherapeutic role for this miRNA by treating miR-19a-3p expressing cells with H2O2 to induce senescence. Interestingly, these cells exhibited lower p16 Ink4a and p21 Cip1 expression, increased proliferation-related gene expression, and reduced SA-ß-Gal+ cells. Our results thus establish that miR-19a-3p is a senescence-associated miRNA that decreases with age in mouse and human bones and is a potential senotherapeutic target for age-related bone loss. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

SELECTION OF CITATIONS
SEARCH DETAIL
...