Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1379798, 2024.
Article in English | MEDLINE | ID: mdl-38756777

ABSTRACT

Introduction: Cryptosporidiosis is a poorly controlled zoonosis caused by an intestinal parasite, Cryptosporidium parvum, with a high prevalence in livestock (cattle, sheep, and goats). Young animals are particularly susceptible to this infection due to the immaturity of their intestinal immune system. In a neonatal mouse model, we previously demonstrated the importance of the innate immunity and particularly of type 1 conventional dendritic cells (cDC1) among mononuclear phagocytes (MPs) in controlling the acute phase of C. parvum infection. These immune populations are well described in mice and humans, but their fine characterization in the intestine of young ruminants remained to be further explored. Methods: Immune cells of the small intestinal Peyer's patches and of the distal jejunum were isolated from naive lambs and calves at different ages. This was followed by their fine characterization by flow cytometry and transcriptomic analyses (q-RT-PCR and single cell RNAseq (lamb cells)). Newborn animals were infected with C. parvum, clinical signs and parasite burden were quantified, and isolated MP cells were characterized by flow cytometry in comparison with age matched control animals. Results: Here, we identified one population of macrophages and three subsets of cDC (cDC1, cDC2, and a minor cDC subset with migratory properties) in the intestine of lamb and calf by phenotypic and targeted gene expression analyses. Unsupervised single-cell transcriptomic analysis confirmed the identification of these four intestinal MP subpopulations in lamb, while highlighting a deeper diversity of cell subsets among monocytic and dendritic cells. We demonstrated a weak proportion of cDC1 in the intestine of highly susceptible newborn lambs together with an increase of these cells within the first days of life and in response to the infection. Discussion: Considering cDC1 importance for efficient parasite control in the mouse model, one may speculate that the cDC1/cDC2 ratio plays also a key role for the efficient control of C. parvum in young ruminants. In this study, we established the first fine characterization of intestinal MP subsets in young lambs and calves providing new insights for comparative immunology of the intestinal MP system across species and for future investigations on host-Cryptosporidium interactions in target species.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Homeostasis , Animals , Cryptosporidiosis/immunology , Cryptosporidiosis/parasitology , Cryptosporidium parvum/immunology , Sheep , Cattle , Homeostasis/immunology , Dendritic Cells/immunology , Dendritic Cells/parasitology , Phagocytes/immunology , Phagocytes/parasitology , Animals, Newborn , Sheep Diseases/parasitology , Sheep Diseases/immunology , Peyer's Patches/immunology , Peyer's Patches/parasitology , Macrophages/immunology , Macrophages/parasitology , Intestines/parasitology , Intestines/immunology , Ruminants/parasitology , Ruminants/immunology
2.
Microbiol Spectr ; 11(4): e0013723, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37260371

ABSTRACT

Eimeria tenella is an obligate intracellular parasite responsible for avian coccidiosis. Like other apicomplexan parasites, such as Toxoplasma gondii, cell invasion and intracellular development rely on apical organelle content discharge, named micronemes and rhoptries. Some rhoptry (ROP) kinases (ROPK) are key virulence factors in T. gondii. To date, among the 28 ropk genes carried by E. tenella, only two to four were confirmed by proteomic analysis or immunostaining to be expressed at the sporozoite stage. We have previously shown that EtROP1 is implicated in the inhibition of host cell apoptosis by interacting with the cellular p53. This work functionally described the second ROP kinase expressed at the sporozoite stage in E. tenella. EtROP2 is an active kinase that phosphorylates cell substrates of approximately 50 kDa. Its overexpression leads to the shortening of the prepatent period and to the early development of first-generation schizonts. Conduction of RNA sequencing analysis and reverse transcriptase quantitative PCR (RT-qPCR) on the host cell allowed us to identify the mitogen-activated protein kinase (MAPK) pathway and the transcription factor cFos to be upregulated by EtROP2. We also showed by immunofluorescence assay that the active kinase EtROP2 is implicated in the p38 MAPK pathway activation. We established here that EtROP2 activates the p38 MAPK pathway through a direct or indirect phosphorylation, leading to the overexpression of the master transcription factor cFos known to be implicated in E. tenella development. IMPORTANCE Rhoptries are specialized secretory organelles found in zoite stages of apicomplexan parasites. In addition to well-conserved rhoptry neck proteins, their protein consists mostly of kinase proteins, highly divergent from eukaryotic kinases. Some of those kinases are described as major virulence factors in Toxoplasma gondii, secreted into the host cell to hijack signaling pathways. Most of those kinases remain to be characterized in Eimeria tenella. Deciphering their cellular function is a prerequisite to supporting their relevance as a druggable target in development of new means of Eimeria tenella control. Secreted divergent kinases that interact with host cell partners to modulate pathways are good candidates, as they coevolve with their host targets to ensure their function within the host and are less prone to mutations that would lead to drug resistance. The absence of any orthologous kinase in host cells makes these parasite kinases a promising drug target candidate.


Subject(s)
Eimeria tenella , Toxoplasma , Animals , Eimeria tenella/genetics , Protozoan Proteins/metabolism , Schizonts/metabolism , Proteomics , Toxoplasma/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Transcription Factors/metabolism , Virulence Factors/genetics
3.
Microorganisms ; 9(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34442701

ABSTRACT

Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Apicomplexa specific kinases, such as rhoptry kinases (ROPK). Ropk is a gene family that is known to play important roles in host-pathogen interaction in Toxoplasma gondii but is still poorly described in Eimeria tenella, the parasite responsible for avian coccidiosis worldwide. In the E. tenella genome, 28 ropk genes are predicted and could be classified as active (n = 7), inactive (incomplete catalytic triad, n = 12), and non-canonical kinases (active kinase with a modified catalytic triad, n = 9). We characterized the ropk gene expression patterns by real-time quantitative RT-PCR, normalized by parasite housekeeping genes, during the E. tenella life-cycle. Analyzed stages were: non-sporulated oocysts, sporulated oocysts, extracellular and intracellular sporozoites, immature and mature schizonts I, first- and second-generation merozoites, and gametes. Transcription of all those predicted ropk was confirmed. The mean intensity of transcription was higher in extracellular stages and 7-9 ropk were specifically transcribed in merozoites in comparison with sporozoites. Transcriptional profiles of intracellular stages were closely related to each other, suggesting a probable common role of ROPKs in hijacking signaling pathways and immune responses in infected cells. These results provide a solid basis for future functional analysis of ROPK from E. tenella.

4.
Front Cell Infect Microbiol ; 10: 632556, 2020.
Article in English | MEDLINE | ID: mdl-33614532

ABSTRACT

Coccidiosis is a widespread intestinal disease of poultry caused by a parasite of the genus Eimeria. Eimeria tenella, is one of the most virulent species that specifically colonizes the caeca, an organ which harbors a rich and complex microbiota. Our objective was to study the impact of the intestinal microbiota on parasite infection and development using an original model of germ-free broilers. We observed that germ-free chickens presented significantly much lower load of oocysts in caecal contents than conventional chickens. This decrease in parasite load was measurable in caecal tissue by RT-qPCR at early time points. Histological analysis revealed the presence of much less first (day 2pi) and second generation schizonts (day 3.5pi) in germ-free chickens than conventional chickens. Indeed, at day 3.5pi, second generation schizonts were respectively immature only in germ-free chickens suggesting a lengthening of the asexual phase of the parasite in the absence of microbiota. Accordingly to the consequence of this lengthening, a delay in specific gamete gene expressions, and a reduction of gamete detection by histological analysis in caeca of germ-free chickens were observed. These differences in parasite load might result from an initial reduction of the excystation efficiency of the parasite in the gut of germ-free chickens. However, as bile salts involved in the excystation step led to an even higher excystation efficiency in germ-free compared to conventional chickens, this result could not explain the difference in parasite load. Interestingly, when we shunted the excystation step in vivo by infecting chickens with sporozoites using the cloacal route of inoculation, parasite invasion was similar in germ-free and in conventional chickens but still resulted in significantly lower parasite load in germ-free chickens at day 7pi. Overall, these data highlighted that the absence of intestinal microbiota alters E. tenella replication. Strategies to modulate the microbiota and/or its metabolites could therefore be an alternative approach to limit the negative impact of coccidiosis in poultry.


Subject(s)
Eimeria tenella , Gastrointestinal Microbiome , Parasites , Poultry Diseases , Animals , Chickens
5.
Cell Microbiol ; 21(7): e13027, 2019 07.
Article in English | MEDLINE | ID: mdl-30941872

ABSTRACT

Coccidia are obligate intracellular protozoan parasites responsible for human and veterinary diseases. Eimeria tenella, the aetiologic agent of caecal coccidiosis, is a major pathogen of chickens. In Toxoplasma gondii, some kinases from the rhoptry compartment (ROP) are key virulence factors. ROP kinases hijack and modulate many cellular functions and pathways, allowing T. gondii survival and development. E. tenella's kinome comprises 28 putative members of the ROP kinase family; most of them are predicted, as pseudokinases and their functions have never been characterised. One of the predicted kinase, EtROP1, was identified in the rhoptry proteome of E. tenella sporozoites. Here, we demonstrated that EtROP1 is active, and the N-terminal extension is necessary for its catalytic kinase activity. Ectopic expression of EtROP1 followed by co-immunoprecipitation identified cellular p53 as EtROP1 partner. Further characterisation confirmed the interaction and the phosphorylation of p53 by EtROP1. E. tenella infection or overexpression of EtROP1 resulted both in inhibition of host cell apoptosis and G0/G1 cell cycle arrest. This work functionally described the first ROP kinase from E. tenella and its noncanonical structure. Our study provides the first mechanistic insight into host cell apoptosis inhibition by E. tenella. EtROP1 appears as a new candidate for coccidiosis control.


Subject(s)
Coccidiosis/genetics , Eimeria tenella/genetics , Membrane Proteins/genetics , Protozoan Proteins/genetics , Animals , Apoptosis/genetics , Chickens/parasitology , Coccidiosis/parasitology , Eimeria tenella/pathogenicity , G1 Phase Cell Cycle Checkpoints , Phosphotransferases/genetics , Proteome/genetics , Sporozoites/genetics , Sporozoites/pathogenicity , Toxoplasma/genetics , Toxoplasma/pathogenicity , Virulence Factors/genetics
6.
Parasit Vectors ; 11(1): 44, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29347990

ABSTRACT

BACKGROUND: Eimeria tenella infection leads to acute intestinal disorders responsible for important economic losses in poultry farming worldwide. The life-cycle of E. tenella is monoxenous with the chicken as the exclusive host; infection occurs in caecal epithelial cells. However, in vitro, the complete life-cycle of the parasite has only been propagated successfully in primary chicken kidney cells, which comprise undefined mixed cell populations; no cell line model has been able to consistently support the development of the sexual stages of the parasite. We therefore sought to develop a new model to study E. tenella gametogony in vitro using a recently characterised chicken cell line (CLEC-213) exhibiting an epithelial cell phenotype. METHODS: CLEC-213 were infected with sporozoites from a precocious strain or with second generation merozoites (merozoites II) from wild type strains. Sexual stages of the parasite were determined both at the gene and protein levels. RESULTS: To our knowledge, we show for the first time in CLEC-213, that sporozoites from a precocious strain of E. tenella were able to develop to gametes, as verified by measuring gene expression and by using antibodies to a microgamete-specific protein (EtFOA1: flagellar outer arm protein 1) and a macrogamete-specific protein (EtGAM-56), but oocysts were not observed. However, both gametes and oocysts were observed when cells were infected with merozoites II from wild type strains, demonstrating that completion of the final steps of the parasite cycle is possible in CLEC-213 cells. CONCLUSION: The epithelial cell line CLEC-213 constitutes a useful avian tool for studying Eimeria epithelial cell interactions and the effect of drugs on E. tenella invasion, merogony and gametogony.


Subject(s)
Coccidiosis/veterinary , Eimeria tenella/growth & development , Epithelial Cells/parasitology , Germ Cells/growth & development , Models, Biological , Animals , Cell Line , Chickens , Coccidiosis/parasitology , Coccidiosis/pathology
7.
J Virol ; 90(7): 3684-93, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26792748

ABSTRACT

UNLABELLED: The influenza virus RNA-dependent RNA polymerase, which is composed of three subunits, PB1, PB2, and PA, catalyzes genome replication and transcription within the cell nucleus. The PA linker (residues 197 to 256) can be altered by nucleotide substitutions to engineer temperature-sensitive (ts), attenuated mutants that display a defect in the transport of the PA-PB1 complex to the nucleus at a restrictive temperature. In this study, we investigated the ability of the PA linker to tolerate deletion mutations for further in vitro and in vivo characterization. Four viable mutants with single-codon deletions were generated; all of them exhibited a ts phenotype that was associated with the reduced efficiency of replication/transcription of a pseudoviral reporter RNA in a minireplicon assay. Using fluorescently tagged PB1, we observed that the deletion mutants did not efficiently recruit PB1 to reach the nucleus at a restrictive temperature (39.5°C). Mouse infections showed that the four mutants were attenuated and induced antibodies that were able to protect mice from challenge with a lethal homologous wild-type virus. Serial in vitro passages of two deletion mutants at 39.5°C and 37°C did not allow the restoration of a wild-type phenotype among virus progeny. Thus, our results identify codons that can be deleted in the PA gene to engineer genetically stable ts mutants that could be used to design novel attenuated vaccines. IMPORTANCE: In order to generate genetically stable live influenza A virus vaccines, we constructed viruses with single-codon deletions in a discrete domain of the RNA polymerase PA gene. The four rescued viruses exhibited a temperature-sensitive phenotype that we found was associated with a defect in the transport of the PA-PB1 dimer to the nucleus, where viral replication occurs. These ts deletion mutants were shown to be attenuated and to be able to produce antibodies in mice and to protect them from a lethal challenge. Assays to select revertants that were able to grow efficiently at a restrictive temperature failed, showing that these deletion mutants are genetically more stable than conventional substitution mutants. These results are of interest for the design of genetically stable live influenza virus vaccines.


Subject(s)
Codon , Influenza A virus/physiology , Mutant Proteins/metabolism , RNA-Dependent RNA Polymerase/metabolism , Sequence Deletion , Viral Proteins/metabolism , Virus Replication , Animals , Antibodies, Viral/blood , Disease Models, Animal , Female , Genomic Instability , Influenza A virus/genetics , Influenza A virus/immunology , Mice, Inbred BALB C , Microbial Viability , Mutant Proteins/genetics , Orthomyxoviridae Infections/virology , RNA-Dependent RNA Polymerase/genetics , Temperature , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Proteins/genetics
8.
J Virol ; 89(12): 6376-90, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25855727

ABSTRACT

UNLABELLED: The influenza virus RNA-dependent RNA polymerase catalyzes genome replication and transcription within the cell nucleus. Efficient nuclear import and assembly of the polymerase subunits PB1, PB2, and PA are critical steps in the virus life cycle. We investigated the structure and function of the PA linker (residues 197 to 256), located between its N-terminal endonuclease domain and its C-terminal structured domain that binds PB1, the polymerase core. Circular dichroism experiments revealed that the PA linker by itself is structurally disordered. A large series of PA linker mutants exhibited a temperature-sensitive (ts) phenotype (reduced viral growth at 39.5°C versus 37°C/33°C), suggesting an alteration of folding kinetic parameters. The ts phenotype was associated with a reduced efficiency of replication/transcription of a pseudoviral reporter RNA in a minireplicon assay. Using a fluorescent-tagged PB1, we observed that ts and lethal PA mutants did not efficiently recruit PB1 to reach the nucleus at 39.5°C. A protein complementation assay using PA mutants, PB1, and ß-importin IPO5 tagged with fragments of the Gaussia princeps luciferase showed that increasing the temperature negatively modulated the PA-PB1 and the PA-PB1-IPO5 interactions or complex stability. The selection of revertant viruses allowed the identification of different types of compensatory mutations located in one or the other of the three polymerase subunits. Two ts mutants were shown to be attenuated and able to induce antibodies in mice. Taken together, our results identify a PA domain critical for PB1-PA nuclear import and that is a "hot spot" to engineer ts mutants that could be used to design novel attenuated vaccines. IMPORTANCE: By targeting a discrete domain of the PA polymerase subunit of influenza virus, we were able to identify a series of 9 amino acid positions that are appropriate to engineer temperature-sensitive (ts) mutants. This is the first time that a large number of ts mutations were engineered in such a short domain, demonstrating that rational design of ts mutants can be achieved. We were able to associate this phenotype with a defect of transport of the PA-PB1 complex into the nucleus. Reversion substitutions restored the ability of the complex to move to the nucleus. Two of these ts mutants were shown to be attenuated and able to produce antibodies in mice. These results are of high interest for the design of novel attenuated vaccines and to develop new antiviral drugs.


Subject(s)
Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H1N1 Subtype/radiation effects , Mutation , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/radiation effects , Active Transport, Cell Nucleus , Animals , Circular Dichroism , Female , Genetic Complementation Test , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Binding/radiation effects , Protein Interaction Domains and Motifs , Protein Structure, Secondary , RNA-Dependent RNA Polymerase/chemistry , Temperature , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...