Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 854: 158762, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36126715

ABSTRACT

Nitrate (NO3-) in mine waste rock derived from undetonated NH4NO3 can contaminate receiving waters. An in-situ bioremediation experiment was conducted at a coal mining operation in Elk Valley, British Columbia, Canada to remediate NO3- from large volumes of mine water. Over the test period (201 d), 5000 to 7500 m3 d-1 of NO3--rich (mean concentration 22 mg N L-1) mine water was injected into saturated waste rock along with methanol, nutrients, and a conservative tracer (Br-). Complete denitrification (<0.5 mg N L-1) was recorded in monitoring wells located 38 m from the injection wells after 114 to 141 d of operation. Plots of δ15N- and δ18O-NO3- versus NO3--N concentrations for monitoring wells yielded isotopic enrichment factors (ε) for δ15N- and δ18O-NO3- of -25.7 and -13.2 ‰ for high C/C0 NO3- concentrations (>10.5 mg N L-1) and -5.5 and -3.6 ‰ for lower C/C0 values. The fraction of NO3- denitrified (Dp) calculated using bi-linear ε values for δ15N- and δ18O reproduced the Dp determined independently using a conservative tracer indicating that stable isotope tracers of the NO3- reducing processes in bioremediation are invaluable to determine Dp. Based on the success of this ongoing bioremediation experiment, the technology is being applied at other sites.


Subject(s)
Denitrification , Water Pollutants, Chemical , Nitrogen Isotopes/analysis , Biodegradation, Environmental , Environmental Monitoring , Water Pollutants, Chemical/analysis , Nitrates/analysis , Water , British Columbia
2.
Sci Total Environ ; 640-641: 127-137, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29859430

ABSTRACT

Ammonium nitrate (NH4NO3) mixed with fuel oil is a common blasting agent used to fragment rock into workable size fractions at mines throughout the world. The decomposition and oxidation of undetonated explosives can result in high NO3- concentrations in waters emanating from waste rock dumps. We used the stable isotopic composition of NO3- (δ15N- and δ18O-NO3-) to define and quantify the controls on NO3- composition in waste rock dumps by studying water-unsaturated and saturated conditions at nine coal waste rock dumps located in the Elk Valley, British Columbia, Canada. Estimates of the extent of nitrification of NH4NO3 in oxic zones in the dumps, initial NO3- concentrations prior to denitrification, and the extent of NO3- removal by denitrification in sub-oxic to anoxic zones are provided. δ15N data from unsaturated waste rock dumps confirm NO3- is derived from blasting. δ15N- and δ18O-NO3- data show extensive denitrification can occur in saturated waste rock and in localized zones of elevated water saturation and low oxygen concentrations in unsaturated waste rock. At the mine dump scale, the extent of denitrification in the unsaturated waste rock was inferred from water samples collected from underlying rock drains.

SELECTION OF CITATIONS
SEARCH DETAIL