Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 8: 15708, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28585529

ABSTRACT

Rapid identification of agronomically important genes is of pivotal interest for crop breeding. One source of such genes are crop wild relative (CWR) populations. Here we used a CWR population of <200 wild beets (B. vulgaris ssp. maritima), sampled in their natural habitat, to identify the sugar beet (Beta vulgaris ssp. vulgaris) resistance gene Rz2 with a modified version of mapping-by-sequencing (MBS). For that, we generated a draft genome sequence of the wild beet. Our results show the importance of preserving CWR in situ and demonstrate the great potential of CWR for rapid discovery of causal genes relevant for crop improvement. The candidate gene for Rz2 was identified by MBS and subsequently corroborated via RNA interference (RNAi). Rz2 encodes a CC-NB-LRR protein. Access to the DNA sequence of Rz2 opens the path to improvement of resistance towards rhizomania not only by marker-assisted breeding but also by genome editing.


Subject(s)
Beta vulgaris/genetics , Contig Mapping , Gene Editing , Genes, Plant , Alleles , Crops, Agricultural/genetics , Disease Resistance/genetics , Ecosystem , Genetic Association Studies , Genetic Variation , Genome, Plant , Geography , Hybridization, Genetic , Open Reading Frames , Phenotype , Plant Breeding , Plant Diseases/genetics , Polymorphism, Single Nucleotide , RNA Interference
2.
Heredity (Edinb) ; 108(3): 332-40, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21878984

ABSTRACT

Joint linkage association mapping (JLAM) combines the advantages of linkage mapping and association mapping, and is a powerful tool to dissect the genetic architecture of complex traits. The main goal of this study was to use a cross-validation strategy, resample model averaging and empirical data analyses to compare seven different biometrical models for JLAM with regard to the correction for population structure and the quantitative trait loci (QTL) detection power. Three linear models and four linear mixed models with different approaches to control for population stratification were evaluated. Models A, B and C were linear models with either cofactors (Model-A), or cofactors and a population effect (Model-B), or a model in which the cofactors and the single-nucleotide polymorphism effect were modeled as nested within population (Model-C). The mixed models, D, E, F and G, included a random population effect (Model-D), or a random population effect with defined variance structure (Model-E), a kinship matrix defining the degree of relatedness among the genotypes (Model-F), or a kinship matrix and principal coordinates (Model-G). The tested models were conceptually different and were also found to differ in terms of power to detect QTL. Model-B with the cofactors and a population effect, effectively controlled population structure and possessed a high predictive power. The varying allele substitution effects in different populations suggest as a promising strategy for JLAM to use Model-B for the detection of QTL and then to estimate their effects by applying Model-C.


Subject(s)
Chromosome Mapping , Genetic Linkage , Models, Genetic , Models, Statistical , Beta vulgaris/genetics , Genotype , Linkage Disequilibrium , Quantitative Trait Loci , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL