Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
2.
3.
Exp Neurol ; 363: 114370, 2023 05.
Article in English | MEDLINE | ID: mdl-36878398

ABSTRACT

Growing preclinical and clinical evidence highlights neurosteroid pathway imbalances in Parkinson's Disease (PD) and L-DOPA-induced dyskinesias (LIDs). We recently reported that 5α-reductase (5AR) inhibitors dampen dyskinesias in parkinsonian rats; however, unraveling which specific neurosteroid mediates this effect is critical to optimize a targeted therapy. Among the 5AR-related neurosteroids, striatal pregnenolone has been shown to be increased in response to 5AR blockade and decreased after 6-OHDA lesions in the rat PD model. Moreover, this neurosteroid rescued psychotic-like phenotypes by exerting marked antidopaminergic activity. In light of this evidence, we investigated whether pregnenolone might dampen the appearance of LIDs in parkinsonian drug-naïve rats. We tested 3 escalating doses of pregnenolone (6, 18, 36 mg/kg) in 6-OHDA-lesioned male rats and compared the behavioral, neurochemical, and molecular outcomes with those induced by the 5AR inhibitor dutasteride, as positive control. The results showed that pregnenolone dose-dependently countered LIDs without affecting L-DOPA-induced motor improvements. Post-mortem analyses revealed that pregnenolone significantly prevented the increase of validated striatal markers of dyskinesias, such as phospho-Thr-34 DARPP-32 and phospho-ERK1/2, as well as D1-D3 receptor co-immunoprecipitation in a fashion similar to dutasteride. Moreover, the antidyskinetic effect of pregnenolone was paralleled by reduced striatal levels of BDNF, a well-established factor associated with the development of LIDs. In support of a direct pregnenolone effect, LC/MS-MS analyses revealed that striatal pregnenolone levels strikingly increased after the exogenous administration, with no significant alterations in downstream metabolites. All these data suggest pregnenolone as a key player in the antidyskinetic properties of 5AR inhibitors and highlight this neurosteroid as an interesting novel tool to target LIDs in PD.


Subject(s)
Dyskinesia, Drug-Induced , Neurosteroids , Parkinson Disease , Male , Rats , Animals , Levodopa/adverse effects , Parkinson Disease/pathology , Dutasteride/metabolism , Dutasteride/pharmacology , Dutasteride/therapeutic use , Oxidopamine/toxicity , Neurosteroids/metabolism , Neurosteroids/pharmacology , Neurosteroids/therapeutic use , Rats, Sprague-Dawley , Dyskinesia, Drug-Induced/metabolism , Corpus Striatum/metabolism , Antiparkinson Agents/adverse effects , Disease Models, Animal
4.
Eur Arch Psychiatry Clin Neurosci ; 273(2): 411-425, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36094569

ABSTRACT

Antisocial behavior (ASB) is characterized by frequent violations of the rights and properties of others, as well as aggressive conduct. While ample evidence points to a critical role of serotonin in the emotional modulation of social responses, the implication of this neurotransmitter in ASB is unclear. Here, we performed the first-ever postmortem analysis of serotonergic markers in the orbitofrontal cortex (OFC) of male subjects with ASB (n = 9). We focused on this brain region, given its well-recognized role in social response and ASB pathophysiology. Given that all individuals also had a substance use disorder (SUD) diagnosis, two age-matched control groups were used: SUD only and unaffected controls. Tissues were processed for immunoblotting analyses on eight key serotonergic targets: tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of brain serotonin synthesis; serotonin transporter (SERT), the primary carrier for serotonin uptake; monoamine oxidase A (MAOA), the primary enzyme for serotonin catabolism; and five serotonin receptors previously shown to influence social behavior: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C, and 5-HT4. Our analyses documented a significant increase in 5-HT2A receptor levels in the ASB + SUD group compared to SUD-only controls. Furthermore, TPH2 levels were significantly reduced in the SUD group (including SUD only and ASB + SUD) compared to unaffected controls. No difference was detected in the expression of any other serotonergic target. These results are in keeping with previous evidence showing high 5-HT2A receptor binding in the OFC of pathologically aggressive individuals and point to this molecule as a potential target for ASB treatment.


Subject(s)
Antisocial Personality Disorder , Prefrontal Cortex , Receptor, Serotonin, 5-HT2A , Adult , Humans , Male , Middle Aged , Young Adult , Antisocial Personality Disorder/complications , Antisocial Personality Disorder/enzymology , Antisocial Personality Disorder/metabolism , Autopsy , Monoamine Oxidase/metabolism , Prefrontal Cortex/enzymology , Prefrontal Cortex/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Substance-Related Disorders/complications , Substance-Related Disorders/enzymology , Substance-Related Disorders/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Aggression , Case-Control Studies
5.
Antioxid Redox Signal ; 38(13-15): 920-958, 2023 05.
Article in English | MEDLINE | ID: mdl-36352822

ABSTRACT

Significance: Increased plasma concentrations of total homocysteine (tHcy; mild-moderate hyperhomocysteinemia: 15-50 µM tHcy) are considered an independent risk factor for the onset/progression of various diseases, but it is not known about how the increase in tHcy causes pathological conditions. Recent Advances: Reduced homocysteine (HSH ∼1% of tHcy) is presumed to be toxic, unlike homocystine (∼9%) and mixed disulfide between homocysteine and albumin (HSS-ALB; homocysteine [Hcy]-albumin mixed disulfide, ∼90%). This and other notions make it difficult to explain the pathogenicity of Hcy because: (i) lowering tHcy does not improve pathological outcomes; (ii) damage due to HSH usually emerges at supraphysiological doses; and (iii) it is not known why tiny increments in plasma concentrations of HSH can be pathological. Critical Issues: Albumin may have a role in Hcy toxicity, because HSS-ALB could release toxic HSH via thiol-disulfide (SH/SS) exchange reactions in cells. Similarly, thiol-disulfide exchange processes of reduced albumin (albumin with free SH group of Cys34 [HS-ALB]) or N-homocysteinylated albumin are plausible alternatives for initiating Hcy pathological events. Adverse effects of albumin and other data reviewed here suggest the hypothesis of a role of albumin in Hcy toxicity. Future Directions: HSS-ALB might be involved in disruption of the antioxidant/oxidant balance in critical tissues (brain, liver, kidney). Since homocysteine-albumin mixed disulfide is a possible intermediate of thiol-disulfide exchange reactions, we suggest that homocysteinylated albumin could be a new pathological factor, and that studies on the redox role of albumin and mixed disulfide production via thiol-disulfide exchange reactions could offer new therapeutic insights for reducing Hcy toxicity.


Subject(s)
Hyperhomocysteinemia , Sulfhydryl Compounds , Humans , Disulfides , Homocystine , Homocysteine
6.
Neurobiol Stress ; 21: 100489, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36532377

ABSTRACT

Ample evidence indicates that environmental stress impairs information processing, yet the underlying mechanisms remain partially elusive. We showed that, in several rodent models of psychopathology, the neurosteroid allopregnanolone (AP) reduces the prepulse inhibition (PPI) of the startle, a well-validated index of sensorimotor gating. Since this GABAA receptor activator is synthesized in response to acute stress, we hypothesized its participation in stress-induced PPI deficits. Systemic AP administration reduced PPI in C57BL/6J mice and Long-Evans, but not Sprague-Dawley rats. These effects were reversed by isoallopregnanolone (isoAP), an endogenous AP antagonist, and the GABAA receptor antagonist bicuculline and mimicked by AP infusions in the medial prefrontal cortex (mPFC). Building on these findings, we tested AP's implication in the PPI deficits produced by several complementary regimens of acute and short-term stress (footshock, restraint, predator exposure, and sleep deprivation). PPI was reduced by acute footshock, sleep deprivation as well as the combination of restraint and predator exposure in a time- and intensity-dependent fashion. Acute stress increased AP concentrations in the mPFC, and its detrimental effects on PPI were countered by systemic and intra-mPFC administration of isoAP. These results collectively indicate that acute stress impairs PPI by increasing AP content in the mPFC. The confirmation of these mechanisms across distinct animal models and several acute stressors strongly supports the translational value of these findings and warrants future research on the role of AP in information processing.

7.
Biomolecules ; 12(5)2022 05 20.
Article in English | MEDLINE | ID: mdl-35625650

ABSTRACT

Peroxisome proliferator-activator receptors (PPARs) regulate lipid and glucose metabolism, control inflammatory processes, and modulate several brain functions. Three PPAR isoforms have been identified, PPARα, PPARß/δ, and PPARγ, which are expressed in different tissues and cell types. Hereinafter, we focus on PPARα involvement in the pathophysiology of neuropsychiatric and neurodegenerative disorders, which is underscored by PPARα localization in neuronal circuits involved in emotion modulation and stress response, and its role in neurodevelopment and neuroinflammation. A multiplicity of downstream pathways modulated by PPARα activation, including glutamatergic neurotransmission, upregulation of brain-derived neurotrophic factor, and neurosteroidogenic effects, encompass mechanisms underlying behavioral regulation. Modulation of dopamine neuronal firing in the ventral tegmental area likely contributes to PPARα effects in depression, anhedonia, and autism spectrum disorder (ASD). Based on robust preclinical evidence and the initial results of clinical studies, future clinical trials should assess the efficacy of PPARα agonists in the treatment of mood and neurodevelopmental disorders, such as depression, schizophrenia, and ASD.


Subject(s)
Autism Spectrum Disorder , PPAR alpha , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Humans , PPAR alpha/agonists , PPAR gamma , Signal Transduction , Transcriptional Activation
8.
Brain Res Bull ; 181: 157-166, 2022 04.
Article in English | MEDLINE | ID: mdl-35122898

ABSTRACT

Pramipexole is a potent agonist of D3 and D2 dopamine receptors, currently approved for clinical use in Parkinson's disease (PD) and restless leg syndrome. Several studies have shown that pramipexole significantly increases the risk of pathological gambling and impulse-control disorders. While these iatrogenic complications can impose a severe social and financial burden, their treatment poses serious clinical challenges. Our group previously reported that the steroidogenic inhibitor finasteride reduced pathological gambling severity in PD patients who developed this complication following pramipexole treatment. To study the mechanisms underlying these effects, here we tested the impact of finasteride in a rat model of pramipexole-induced alterations of probability discounting. We previously showed that, in rats exposed to low doses of the monoamine-depleting agent reserpine (1 mg/kg/day, SC), pramipexole (0.3 mg/kg/day, SC) increased the propensity to engage in disadvantageous choices. This effect was paralleled by a marked D3 receptor upregulation in the nucleus accumbens. First, we tested how finasteride (25-50 mg/kg, IP) intrinsically affects probability discounting. While the highest dose of finasteride produced a marked lack of interest in lever pressing (manifested as a significant increase in omissions), the 25 mg/kg (IP) dose did not intrinsically modify probability discounting. However, this finasteride regimen significantly reduced the adverse effects of reserpine and pramipexole in probability discounting by diminishing rats' propensity to engage in highly disadvantageous probabilistic choices. The same regimen also reversed the upregulation of D3 receptors in the nucleus accumbens induced by reserpine and pramipexole. These findings confirm that finasteride opposes the impulsivity caused by pramipexole and suggest that this effect may be underpinned by a normalizing effect on D3 receptor expression in the nucleus accumbens.


Subject(s)
5-alpha Reductase Inhibitors/pharmacology , Choice Behavior/drug effects , Dopamine Agonists/pharmacology , Finasteride/pharmacology , Impulsive Behavior/drug effects , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Pramipexole/pharmacology , Probability Learning , Receptors, Dopamine D3/drug effects , Receptors, Dopamine D3/metabolism , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Rats , Receptors, Dopamine D3/agonists
9.
J Neuroendocrinol ; 34(2): e13022, 2022 02.
Article in English | MEDLINE | ID: mdl-34423500

ABSTRACT

The neurosteroid allopregnanolone (3α-hydroxy-5α-pregnan-20-one; AP) elicits pleiotropic effects in the central nervous system, ranging from neuroprotective and anti-inflammatory functions to the regulation of mood and emotional responses. Several lines of research show that the brain rapidly produces AP in response to acute stress to reduce the allostatic load and enhance coping. These effects not only are likely mediated by GABAA receptor activation but also result from the contributions of other mechanisms, such as the stimulation of membrane progesterone receptors. In keeping with this evidence, AP has been shown to exert rapid, potent antidepressant properties and has been recently approved for the therapy of moderate-to-severe postpartum depression. In addition to depression, emerging evidence points to the potential of AP as a therapy for other neuropsychiatric disorders, including anxiety, seizures, post-traumatic stress disorder and cognitive problems. Although this evidence has spurred interest in further therapeutic applications of AP, some investigations suggest that this neurosteroid may also be associated with adverse events in specific disorders. For example, our group has recently documented that AP increases tic-like manifestations in several animal models of tic disorders; furthermore, our results indicate that inhibiting AP synthesis and signalling reduces the exacerbation of tic severity associated with acute stress. Although the specific mechanisms of these effects remain partially elusive, our findings point to the possibility that the GABAergic activation by AP may also lead to disinhibitory effects, which could interfere with the ability of patients to suppress their tics. Future studies will be necessary to verify whether these mechanisms may apply to other externalising manifestations, such as impulse-control problems and manic symptoms.


Subject(s)
Neurosteroids , Tic Disorders , Tics , Animals , Female , Humans , Neurosteroids/therapeutic use , Pregnanolone/therapeutic use , Receptors, GABA-A/physiology , Tic Disorders/drug therapy , Tics/drug therapy
10.
J Parkinsons Dis ; 10(4): 1503-1514, 2020.
Article in English | MEDLINE | ID: mdl-32651332

ABSTRACT

BACKGROUND: We recently showed that striatal overexpression of brain derived neurotrophic factor (BDNF) by adeno-associated viral (AAV) vector exacerbated L-DOPA-induced dyskinesia (LID) in 6-OHDA-lesioned rats. An extensive sprouting of striatal serotonergic terminals accompanied this effect, accounting for the increased susceptibility to LID. OBJECTIVE: We set to investigate whether the BDNF effect was restricted to LID, or extended to dyskinesia induced by direct D1 receptor agonists. METHODS: Unilaterally 6-OHDA-lesioned rats received a striatal injection of an AAV vector to induce BDNF or GFP overexpression. Eight weeks later, animals received daily treatments with a low dose of SKF82958 (0.02 mg/kg s.c.) and development of dyskinesia was evaluated. At the end of the experiment, D1 and D3 receptors expression levels and D1 receptor-dependent signaling pathways were measured in the striatum. RESULTS: BDNF overexpression induced significant worsening of dyskinesia induced by SKF82958 compared to the GFP group and increased the expression of D3 receptor at striatal level, even in absence of pharmacological treatment; by contrast, D1 receptor levels were not affected. In BDNF-overexpressing striata, SKF82958 administration resulted in increased levels of D1-D3 receptors co-immunoprecipitation and increased phosphorylation levels of Thr34 DARPP-32 and ERK1/2. CONCLUSION: Here we provide evidence for a functional link between BDNF, D3 receptors and D1-D3 receptor close interaction in the augmented susceptibility to dyskinesia in 6-OHDA-lesioned rats. We suggest that D1-D3 receptors interaction may be instrumental in driving the molecular alterations underlying the appearance of dyskinesia; its disruption may be a therapeutic strategy for treating dyskinesia in PD patients.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Corpus Striatum/metabolism , Dopamine Agonists/pharmacology , Dyskinesia, Drug-Induced/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D3/metabolism , Animals , Benzazepines/pharmacology , Brain-Derived Neurotrophic Factor/drug effects , Corpus Striatum/drug effects , Disease Models, Animal , Disease Susceptibility/chemically induced , Dyskinesia, Drug-Induced/etiology , Immunoprecipitation , Oxidopamine , Rats , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D3/drug effects
11.
Mol Autism ; 11(1): 62, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32718349

ABSTRACT

BACKGROUND: The social motivational theory of autism spectrum disorder (ASD) focuses on social anhedonia as key causal feature of the impaired peer relationships that characterize ASD patients. ASD prevalence is higher in boys, but increasing evidence suggests underdiagnosis and undertreatment in girls. We showed that stress-induced motivational anhedonia is relieved by repeated treatment with fenofibrate (FBR), a peroxisome proliferator-activated receptor α (PPARα) agonist. Here, we used the valproic acid (VPA) model of ASD in rats to examine male and female phenotypes and assess whether FBR administration from weaning to young adulthood relieved social impairments. METHODS: Male and female rats exposed to saline or VPA at gestational day 12.5 received standard or FBR-enriched diet from postnatal day 21 to 48-53, when behavioral tests and ex vivo neurochemical analyses were performed. Phosphorylation levels of DARPP-32 in response to social and nonsocial cues, as index of dopamine D1 receptor activation, levels of expression of PPARα, vesicular glutamatergic and GABAergic transporters, and postsynaptic density protein PSD-95 were analyzed by immunoblotting in selected brain regions. RESULTS: FBR administration relieved social impairment and perseverative behavior in VPA-exposed male and female rats, but it was only effective on female stereotypies. Dopamine D1 receptor signaling triggered by social interaction in the nucleus accumbens shell was blunted in VPA-exposed rats, and it was rescued by FBR treatment only in males. VPA-exposed rats of both sexes exhibited an increased ratio of striatal excitatory over inhibitory synaptic markers that was normalized by FBR treatment. LIMITATIONS: This study did not directly address the extent of motivational deficit in VPA-exposed rats and whether FBR administration restored the likely decreased motivation to operate for social reward. Future studies using operant behavior protocols will address this relevant issue. CONCLUSIONS: The results support the involvement of impaired motivational mechanisms in ASD-like social deficits and suggest the rationale for a possible pharmacological treatment. Moreover, the study highlights sex-related differences in the expression of ASD-like symptoms and their differential responses to FBR treatment.


Subject(s)
Autistic Disorder/metabolism , Autistic Disorder/psychology , Motivation , PPAR alpha/metabolism , Sex Characteristics , Social Behavior , Animals , Anxiety/complications , Behavior, Animal , Biomarkers/metabolism , Disease Models, Animal , Female , Fenofibrate/administration & dosage , Male , Maze Learning , Nucleus Accumbens/drug effects , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Rats, Sprague-Dawley , Synapses/metabolism , Valproic Acid
12.
Behav Pharmacol ; 31(2&3): 283-292, 2020 04.
Article in English | MEDLINE | ID: mdl-32040017

ABSTRACT

Morphine sensitization is associated with increased locomotion and stereotypies in rats. This persistent condition has been proposed as a model of manic-like symptoms. Modifications in reward threshold are considered a central feature of mania and have been related to changes in mesocorticolimbic dopaminergic transmission. Thus, to further characterize this model, we investigated reward responses in morphine-sensitized male rats and the mechanisms underlying the behavioral phenotype. In particular, we examined the possible involvement of hyperpolarization-activated cyclic nucleotide-gated channels as they play a critical role in regulating the excitability of dopaminergic neurons. Rats were trained to self-administer sucrose to study whether morphine sensitization affected motivated behavior. Next, the dopaminergic response to sucrose was examined in the nucleus accumbens shell by in vivo microdialysis. To investigate the possible mechanisms underlying the increased dopaminergic transmission in morphine-sensitized rats, HCN2 channel expression levels in mesocorticolimbic regions were analyzed by immunoblotting. Sensitized rats showed an enhanced motivation to work for sucrose that was accompanied by an increased dopaminergic response to sucrose consumption in the nucleus accumbens shell. Moreover, HCN2 expression levels were increased in the ventral tegmental area, suggesting that their increased expression may underpin the enhanced motivation for sucrose reward and nucleus accumbens shell dopaminergic response in sensitized rats. The modified behavioral and dopaminergic reward response observed in sensitized rats supports the suggestion that the condition of morphine sensitization can be regarded as a model of manic symptoms.


Subject(s)
Bipolar Disorder/physiopathology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Potassium Channels/metabolism , Ventral Tegmental Area/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Dopamine/metabolism , Gene Expression/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/drug effects , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Male , Morphine/pharmacology , Nucleus Accumbens/metabolism , Potassium Channels/drug effects , Potassium Channels/genetics , Rats , Rats, Sprague-Dawley , Reward , Transcriptome/genetics , Ventral Tegmental Area/physiology
13.
Eur Neuropsychopharmacol ; 32: 104-119, 2020 03.
Article in English | MEDLINE | ID: mdl-31983530

ABSTRACT

Pramipexole (PPX) is a D2 and D3 dopamine receptor agonist approved for clinical use, which is associated with a higher risk of impulse-control disorders. Using a rat model, we recently found that low doses of the monoamine-depleting agent reserpine (RES; 1 mg/kg/day, SC) dramatically increased the untoward effects of PPX (0.3 mg/kg/day, SC) on probability discounting, a key impulsivity function. To further understand the neurobehavioral mechanisms underlying these effects, we first tested whether the combination of PPX and RES may lead to a generalized enhancement in risk taking, as tested in the suspended wire-beam paradigm. The association of RES and PPX did not augment the proclivity of rats to cross the bridge in order to obtain a reward, suggesting that the effects of RES and PPX on probability discounting do not reflect a generalized increase in impulsivity. We then studied what receptors mediate the effects of PPX in RES-treated rats. The combination of RES and PPX increased membrane expression and binding of D3, but not D2 dopamine receptors, in the nucleus accumbens. However, the behavioral effects of PPX and RES were not reduced by acute treatments with the D2/D3 receptor antagonist raclopride (0.01-0.05 mg/kg, SC), the highly selective D2 receptor antagonist L-741,626 (0.1-1 mg/kg, SC) or the D3 receptor antagonists GR 103691 (0.1-0.3 mg/kg, SC) and SB 277011A (1-10 mg/kg, SC). These findings collectively suggest that the effects of PPX in probability discounting do not reflect generalized enhancements in impulsivity or acute dopamine D2 or D3 receptor activation.


Subject(s)
Delay Discounting/drug effects , Discrimination Learning/drug effects , Dopamine Agonists/toxicity , Dopamine D2 Receptor Antagonists/pharmacology , Pramipexole/toxicity , Receptors, Dopamine D3/antagonists & inhibitors , Animals , Delay Discounting/physiology , Discrimination Learning/physiology , Male , Rats , Rats, Long-Evans , Reaction Time/drug effects , Reaction Time/physiology , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism
14.
Biomolecules ; 9(11)2019 11 19.
Article in English | MEDLINE | ID: mdl-31752360

ABSTRACT

Finasteride (FIN) is the prototypical inhibitor of steroid 5α-reductase (5αR), the enzyme that catalyzes the rate-limiting step of the conversion of progesterone and testosterone into their main neuroactive metabolites. FIN is clinically approved for the treatment of benign prostatic hyperplasia and male baldness; while often well-tolerated, FIN has also been shown to cause or exacerbate psychological problems in vulnerable subjects. Evidence on the psychological effects of FIN, however, remains controversial, in view of inconsistent clinical reports. Here, we tested the effects of FIN in a battery of tests aimed at capturing complementary aspects of mood regulation and stress reactivity in rats. FIN reduced exploratory, incentive, prosocial, and risk-taking behavior; furthermore, it decreased stress coping, as revealed by increased immobility in the forced-swim test (FST). This last effect was also observed in female and orchiectomized male rats, suggesting that the mechanism of action of FIN does not primarily reflect changes in gonadal steroids. The effects of FIN on FST responses were associated with a dramatic decrease in corticotropin release hormone (CRH) mRNA and adrenocorticotropic hormone (ACTH) levels. These results suggest that FIN impairs stress reactivity and reduces behavioral activation and impulsive behavior by altering the function of the hypothalamus-pituitary-adrenal (HPA) axis.


Subject(s)
5-alpha Reductase Inhibitors/pharmacology , Adrenocorticotropic Hormone/metabolism , Behavior, Animal/drug effects , Corticotropin-Releasing Hormone/metabolism , Finasteride/pharmacology , Stress, Psychological , Affect/drug effects , Animals , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/pathology , Rats , Rats, Long-Evans , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Stress, Psychological/pathology
15.
Neuropharmacology ; 159: 107513, 2019 11 15.
Article in English | MEDLINE | ID: mdl-30716416

ABSTRACT

The ontogeny of antisocial behavior (ASB) is rooted in complex gene-environment (G×E) interactions. The best-characterized of these interplays occurs between: a) low-activity alleles of the gene encoding monoamine oxidase A (MAOA), the main serotonin-degrading enzyme; and b) child maltreatment. The purpose of this study was to develop the first animal model of this G×E interaction, to help understand the neurobiological mechanisms of ASB and identify novel targets for its therapy. Maoa hypomorphic transgenic mice were exposed to an early-life stress regimen consisting of maternal separation and daily intraperitoneal saline injections and were then compared with their wild-type and non-stressed controls for ASB-related neurobehavioral phenotypes. Maoa hypomorphic mice subjected to stress from postnatal day (PND) 1 through 7 - but not during the second postnatal week - developed overt aggression, social deficits and abnormal stress responses from the fourth week onwards. On PND 8, these mice exhibited low resting heart rate - a well-established premorbid sign of ASB - and a significant and selective up-regulation of serotonin 5-HT2A receptors in the prefrontal cortex. Notably, both aggression and neonatal bradycardia were rescued by the 5-HT2 receptor antagonist ketanserin (1-3 mg kg-1, IP), as well as the selective 5-HT2A receptor blocker MDL-100,907 (volinanserin, 0.1-0.3 mg kg-1, IP) throughout the first postnatal week. These findings provide the first evidence of a molecular basis of G×E interactions in ASB and point to early-life 5-HT2A receptor activation as a key mechanism for the ontogeny of this condition. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.


Subject(s)
Antisocial Personality Disorder/metabolism , Gene-Environment Interaction , Maternal Deprivation , Receptor, Serotonin, 5-HT2A/metabolism , Stress, Psychological/metabolism , Age Factors , Animals , Animals, Newborn , Antisocial Personality Disorder/psychology , Dose-Response Relationship, Drug , Female , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Mice, Transgenic , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Stress, Psychological/psychology
16.
Neurobiol Dis ; 121: 120-130, 2019 01.
Article in English | MEDLINE | ID: mdl-30261284

ABSTRACT

Although 1-3,4-dihydroxyphenylalanine (L-DOPA) is the mainstay therapy for treating Parkinson's disease (PD), its long-term administration is accompanied by the development of motor complications, particularly L-DOPA induced dyskinesia (LID), that dramatically affects patients' quality of life. LID has consistently been related to an excessive dopamine receptor transmission, particularly at the down-stream signaling of the striatal D1 receptors (D1R), resulting in an exaggerated stimulation of cAMP-dependent protein kinase and extracellular signal-regulated kinase (ERK) pathway. We previously reported that pharmacological blockade of 5alpha-reductase (5AR), the rate-limiting enzyme in neurosteroids synthesis, attenuates the severity of a broad set of behavioral alterations induced by D1R and D3R activation, without inducing extrapyramidal symptoms. In line with this evidence, in a recent study, we found that inhibition of 5AR by finasteride (FIN) produced a significant reduction of dyskinesia induced by L-DOPA and direct dopaminergic agonists in 6-OHDA-lesioned rats. In the attempt to further investigate the effect of 5AR inhibitors on dyskinesia and shed light on the mechanism of action, in the present study we compared the effect of FIN and dutasteride (DUTA), a potent dual 5AR inhibitor, on the development of LID, on the therapeutic efficacy of L-DOPA, on the molecular alterations downstream to the D1R, as well as on D1R-D3R interaction. The results indicated that both FIN and DUTA administration significantly reduced development and expression of LID; however, DUTA appeared more effective than FIN at a lower dose and produced its antidyskinetic effect without impacting the ability of L-DOPA to increase motor activation, or ameliorate forelimb use in parkinsonian rats. Moreover, this study demonstrates for the first time that 5AR inhibitors are able to prevent key events in the appearance of dyskinesia, such as L-DOPA-induced upregulation of striatal D1R-related cAMP/PKA/ERK signaling pathways and D1R-D3R coimmunoprecipitation, an index of heteromer formation. These findings are relevant as they confirm the 5AR enzyme as a potential therapeutic target for treatment of dyskinesia in PD, suggesting the first ever evidence that neurosteroidogenesis may affect functional interaction between dopamine D1R and D3R.


Subject(s)
5-alpha Reductase Inhibitors/administration & dosage , Dutasteride/administration & dosage , Dyskinesia, Drug-Induced/prevention & control , Finasteride/administration & dosage , Levodopa/administration & dosage , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D3/metabolism , Animals , Antiparkinson Agents/administration & dosage , Dyskinesia, Drug-Induced/metabolism , MAP Kinase Signaling System/drug effects , Male , Rats, Sprague-Dawley
17.
Article in English | MEDLINE | ID: mdl-30472147

ABSTRACT

In various psychiatric disorders, deficits in dopaminergic activity in the prefrontal cortex (PFC) are implicated. Treatments involving selective augmentation of dopaminergic activity in the PFC primarily depend on the inhibition of α2-adrenoreceptors singly or in combination with the inhibition of the norepinephrine transporter (NET). We aimed to clarify the relative contribution of dopamine (DA) release from noradrenergic and dopaminergic terminals to DA output induced by blockade of α2-adrenoreceptors and NET. To this end, we assessed whether central noradrenergic denervation modified catecholamine output in the medial PFC (mPFC) of rats elicited by atipamezole (an α2-adrenoreceptor antagonist), nisoxetine (an NET inhibitor), or their combination. Intraventricular administration of anti-dopamine-beta-hydroxylase-saporin (aDBH) caused a loss of DBH-positive fibers in the mPFC and almost total depletion of tissue and extracellular NE level; however, it did not reduce tissue DA level but increased extracellular DA level by 70% in the mPFC. Because noradrenergic denervation should have caused a loss of NET and reduced NE level at α2-adrenoceptors, the actual effect of an aDBH-induced lesion on DA output elicited by blockade of α2-adrenoceptors and NET was evaluated by comparing denervated and control rats following blockade of α2-adrenoceptors and NET with atipamezole and nisoxetine, respectively. In the control rats, extracellular NE and DA levels increased by approximately 150% each with 3 mg/kg atipamezole; 450% and 230%, respectively, with 3 mg/kg nisoxetine; and 2100% and 600%, respectively, with combined atipamezole and nisoxetine. In the denervated rats, consistent with the loss of NET, nisoxetine failed to modify extracellular DA level, whereas atipamezole, despite the lack of NE-induced stimulation of α2-adrenoceptors, increased extracellular DA level by approximately 30%. Overall, these results suggest that atipamezole-induced DA release mainly originated from noradrenergic terminals, possibly through the inhibition of α2-autoreceptors. Furthermore, while systemic and local administration of the α2-adrenoceptor agonist clonidine into the mPFC of the controls rats reduced extracellular NE level by 80% and 60%, respectively, and extracellular DA level by 50% and 60%, respectively, it failed to reduce DA output in the denervated rats, consistent with the loss of α2-autoreceptors. To eliminate the possibility that denervation reduced DA release potential via the effects at dopaminergic terminals in the mPFC, the effect of systemic administration of the D2-DA antagonist raclopride (0.5 mg/kg IP) on DA output was analyzed. In the control rats, raclopride was found to be ineffective when administered alone, but it increased extracellular DA level by 380% following NET inhibition with nisoxetine. In the denervated rats, as expected due to the loss of NET, raclopride-alone or with nisoxetine-increased DA release to approximately the same level as that observed in the control rats after NET inhibition. Overall, these results suggest that noradrenergic terminals in the mPFC are the primary source of DA released by blockade of α2-adrenoreceptors and NET and that α2-autoreceptors, and not α2-heteroreceptors, mediate DA output induced by α2-adrenoceptor blockade.


Subject(s)
Adrenergic Neurons/metabolism , Dopamine/metabolism , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine/metabolism , Prefrontal Cortex/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Adrenergic Neurons/drug effects , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Antagonists/pharmacology , Animals , Fluoxetine/analogs & derivatives , Fluoxetine/pharmacology , Imidazoles/pharmacology , Male , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Prefrontal Cortex/drug effects , Rats, Sprague-Dawley
18.
Heliyon ; 4(10): e00849, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30338306

ABSTRACT

BACKGROUND: The antiepileptic lamotrigine is approved for maintenance treatment of bipolar disorder and augmentation therapy in treatment-resistant depression. Previous preclinical investigations showed lamotrigine antidepressant-like effects without addressing its possible activity on motivational aspects of anhedonia, a symptom clinically associated with poor treatment response and with blunted mesolimbic dopaminergic responsiveness to salient stimuli in preclinical models. Thus, in rats expressing a depressive-like phenotype we studied whether repeated lamotrigine administration restored behavioral responses to aversive and positive stimuli and the dopaminergic response to sucrose in the nucleus accumbens shell (NAcS), all disrupted by stress exposure. METHODS: Depressive-like phenotype was induced in non-food-deprived adult male Sprague-Dawley rats by exposure to a chronic protocol of alternating unavoidable tail-shocks or restraint periods. We examined whether lamotrigine administration (7.5 mg/kg twice a day, i.p.) for 14-21 days restored a) the competence to escape aversive stimuli; b) the motivation to operate in sucrose self-administration protocols; c) the dopaminergic response to sucrose consumption, evaluated measuring phosphorylation levels of cAMP-regulated phosphoprotein Mr 32,000 (DARPP-32) in the NAcS, by immunoblotting. RESULTS: Lamotrigine administration restored the response to aversive stimuli and the motivation to operate for sucrose. Moreover, it reinstated NAcS DARPP-32 phosphorylation changes in response to sucrose consumption. LIMITATIONS: The pro-motivational effects of lamotrigine that we report may not completely transpose to clinical use, since anhedonia is a multidimensional construct and the motivational aspects, although relevant, are not the only components. CONCLUSIONS: This study shows antidepressant-like and pro-motivational effects of repeated lamotrigine administration in a rat model of depressive symptoms.

19.
Int J Neuropsychopharmacol ; 21(11): 1049-1065, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30239762

ABSTRACT

A markedly reduced interest or pleasure in activities previously considered pleasurable is a main symptom in mood disorder and psychosis and is often present in other psychiatric disorders and neurodegenerative diseases. This condition can be labeled as "anhedonia," although in its most rigorous connotation the term refers to the lost capacity to feel pleasure that is one aspect of the complex phenomenon of processing and responding to reward. The responses to rewarding stimuli are relatively easy to study in rodents, and the experimental conditions that consistently and persistently impair these responses are used to model anhedonia. To this end, long-term exposure to environmental aversive conditions is primarily used, and the resulting deficits in reward responses are often accompanied by other deficits that are mainly reminiscent of clinical depressive symptoms. The different components of impaired reward responses induced by environmental aversive events can be assessed by different tests or protocols that require different degrees of time allocation, technical resources, and equipment. Rodent models of anhedonia are valuable tools in the study of the neurobiological mechanisms underpinning impaired behavioral responses and in the screening and characterization of drugs that may reverse these behavioral deficits. In particular, the antianhedonic or promotivational effects are relevant features in the spectrum of activities of drugs used in mood disorders or psychosis. Thus, more than the model, it is the choice of tests that is crucial since it influences which facets of anhedonia will be detected and should be tuned to the purpose of the study.


Subject(s)
Anhedonia/physiology , Disease Models, Animal , Anhedonia/drug effects , Animals , Humans , Mental Disorders/physiopathology , Mental Disorders/therapy , Rodentia
20.
J Neurochem ; 147(4): 439-453, 2018 11.
Article in English | MEDLINE | ID: mdl-30043390

ABSTRACT

Dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa, DARPP-32) is an integrator of multiple neuronal signals and plays a crucial role particularly in mediating the dopaminergic component of the systems involved in the evaluation of stimuli and the ensuing elaboration of complex behavioral responses (e.g., responses to reinforcers and stressors). Dopamine neurons can fire tonically or phasically in distinct timescales and in specific brain regions to code different behaviorally relevant information. Dopamine signaling is mediated mainly through the regulation of adenylyl cyclase activity, stimulated by D1-like or inhibited by D2-like receptors, respectively, that modulates cAMP-dependent protein kinase (PKA) function. The activity of DARPP-32 is finely regulated by its phosphorylation at multiple sites. Phosphorylation at the threonine (Thr) 34 residue by PKA converts DARPP-32 into an inhibitor of protein phosphatase 1, while the phosphorylation at the Thr75 residue turns it into an inhibitor of PKA. Thus, DARPP-32 is critically implicated in regulating striatal output in response to the convergent pathways that influence signaling of the cAMP/PKA pathway. This review summarizes some of the landmark and recent studies of DARPP-32-mediated signaling in the attempt to clarify the role played by DARPP-32 in the response to rewarding natural stimuli. Particularly, the review deals with data derived from rodents studies and discusses the involvement of the cAMP/PKA/DARPP-32 pathway in: 1) appetitive food-sustained motivated behaviors, 2) motivated behaviors sustained by social reward, 3) sexual behavior, and 4) responses to environmental enrichment.


Subject(s)
Dopamine and cAMP-Regulated Phosphoprotein 32/physiology , Reward , Animals , Dopamine/physiology , Environment , Humans , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...