Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cell Oncol ; 8(2): 1881395, 2021.
Article in English | MEDLINE | ID: mdl-33860085

ABSTRACT

The DNA damage response is robustly activated by DNA double-strand breaks and controlled by three apical protein kinases of the PI3-kinase-related protein kinase (PIKK) family: ataxia-telangiectasia, mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and DNA-dependent protein kinase (DNA-PK). Phosphoproteomic analysis reveals the relative share of these PIKKs in coordinating this network, and compensation by ATR and DNA-PK for ATM absence in the genetic disorder, ataxia-telangiectasia (A-T).

2.
EMBO J ; 40(2): e104400, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33215756

ABSTRACT

The DNA damage response (DDR) is a complex signaling network that relies on cascades of protein phosphorylation, which are initiated by three protein kinases of the family of PI3-kinase-related protein kinases (PIKKs): ATM, ATR, and DNA-PK. ATM is missing or inactivated in the genome instability syndrome, ataxia-telangiectasia (A-T). The relative shares of these PIKKs in the response to genotoxic stress and the functional relationships among them are central questions in the genome stability field. We conducted a comprehensive phosphoproteomic analysis in human wild-type and A-T cells treated with the double-strand break-inducing chemical, neocarzinostatin, and validated the results with the targeted proteomic technique, selected reaction monitoring. We also matched our results with 34 published screens for DDR factors, creating a valuable resource for identifying strong candidates for novel DDR players. We uncovered fine-tuned dynamics between the PIKKs following genotoxic stress, such as DNA-PK-dependent attenuation of ATM. In A-T cells, partial compensation for ATM absence was provided by ATR and DNA-PK, with distinct roles and kinetics. The results highlight intricate relationships between these PIKKs in the DDR.


Subject(s)
DNA Damage/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Repair/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HeLa Cells , Humans , Phosphatidylinositol 3-Kinases/genetics , Proteomics/methods , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL