Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 17869, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090159

ABSTRACT

NR2F2 encodes COUP-TFII, an orphan nuclear receptor required for the development of the steroidogenic lineages of the murine fetal testes and ovaries. Pathogenic variants in human NR2F2 are associated with testis formation in 46,XX individuals, however, the function of COUP-TFII in the human testis is unknown. We report a de novo heterozygous variant in NR2F2 (c.737G > A, p.Arg246His) in a 46,XY under-masculinized boy with primary hypogonadism. The variant, located within the ligand-binding domain, is predicted to be highly damaging. In vitro studies indicated that the mutation does not impact the stability or subcellular localization of the protein. NR5A1, a related nuclear receptor that is a key factor in gonad formation and function, is known to physically interact with COUP-TFII to regulate gene expression. The mutant protein did not affect the physical interaction with NR5A1. However, in-vitro assays demonstrated that the mutant protein significantly loses the inhibitory effect on NR5A1-mediated activation of both the LHB and INSL3 promoters. The data support a role for COUP-TFII in human testis formation. Although mutually antagonistic sets of genes are known to regulate testis and ovarian pathways, we extend the list of genes, that together with NR5A1 and WT1, are associated with both 46,XX and 46,XY DSD.


Subject(s)
COUP Transcription Factor II , Testis , Humans , COUP Transcription Factor II/metabolism , COUP Transcription Factor II/genetics , Testis/metabolism , Male , Steroidogenic Factor 1/metabolism , Steroidogenic Factor 1/genetics , Mutation , Hypogonadism/genetics , Hypogonadism/metabolism
2.
Nat Commun ; 15(1): 2796, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555298

ABSTRACT

The Y-linked SRY gene initiates mammalian testis-determination. However, how the expression of SRY is regulated remains elusive. Here, we demonstrate that a conserved steroidogenic factor-1 (SF-1)/NR5A1 binding enhancer is required for appropriate SRY expression to initiate testis-determination in humans. Comparative sequence analysis of SRY 5' regions in mammals identified an evolutionary conserved SF-1/NR5A1-binding motif within a 250 bp region of open chromatin located 5 kilobases upstream of the SRY transcription start site. Genomic analysis of 46,XY individuals with disrupted testis-determination, including a large multigenerational family, identified unique single-base substitutions of highly conserved residues within the SF-1/NR5A1-binding element. In silico modelling and in vitro assays demonstrate the enhancer properties of the NR5A1 motif. Deletion of this hemizygous element by genome-editing, in a novel in vitro cellular model recapitulating human Sertoli cell formation, resulted in a significant reduction in expression of SRY. Therefore, human NR5A1 acts as a regulatory switch between testis and ovary development by upregulating SRY expression, a role that may predate the eutherian radiation. We show that disruption of an enhancer can phenocopy variants in the coding regions of SRY that cause human testis dysgenesis. Since disease causing variants in enhancers are currently rare, the regulation of gene expression in testis-determination offers a paradigm to define enhancer activity in a key developmental process.


Subject(s)
Gonadal Dysgenesis , Testis , Animals , Female , Humans , Male , Cell Line , Mammals/genetics , Regulatory Sequences, Nucleic Acid , Sertoli Cells/metabolism , Sex-Determining Region Y Protein/genetics , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Testis/metabolism
3.
Transl Psychiatry ; 14(1): 146, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485715

ABSTRACT

There is growing evidence that autoantibodies (AAbs) against proteins expressed in the brain are playing an important role in neurological and psychiatric disorders. Here, we explore the presence and the role of peripheral AAbs to the α7-nicotinic acetylcholine receptor (nAChR) in inflammatory subgroups of psychiatric patients with bipolar disorder (BD) or schizophrenia (SCZ) and healthy controls. We have identified a continuum of AAb levels in serum when employing a novel ELISA technique, with a significant elevation in patients compared to controls. Using unsupervised two-step clustering to stratify all the subjects according to their immuno-inflammatory background, we delineate one subgroup consisting solely of psychiatric patients with severe symptoms, high inflammatory profile, and significantly increased levels of anti-nAChR AAbs. In this context, we have used monoclonal mouse anti-human α7-nAChR antibodies (α7-nAChR-mAbs) and shown that TNF-α release was enhanced upon LPS stimulation in macrophages pre-incubated with α7-nAChR-mAbs compared to the use of an isotype control. These findings provide a basis for further study of circulating nicotinic AAbs, and the inflammatory profile observed in patients with major mood and psychotic disorders.


Subject(s)
Bipolar Disorder , Receptors, Nicotinic , Schizophrenia , Humans , Mice , Animals , alpha7 Nicotinic Acetylcholine Receptor , Inflammation/metabolism , Autoantibodies
4.
Front Cell Neurosci ; 17: 1259712, 2023.
Article in English | MEDLINE | ID: mdl-38077953

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) have been used extensively in vitro to model early events in neurodevelopment. Because of a number of shortcomings, previous work has established a potential to use these cells in vivo after transplantation into the mouse brain. Here, we describe a systematic approach for the analysis of transplanted hiPSC-derived neurons and glial cells over time in the mouse brain. Using functional two-photon imaging of GCaMP6f- expressing human neural cells, we define and quantify the embryonic-like features of their spontaneous activity. This is substantiated by detailed electron microscopy (EM) of the graft. We relate this to the synaptic development the neurons undergo up to 7 months in vivo. This system can now be used further for the genetic or experimental manipulation of developing hiPSC-derived cells addressing neurodevelopmental diseases like schizophrenia or Autism Spectrum Disorder.

5.
MAbs ; 6(6): 1638-48, 2014.
Article in English | MEDLINE | ID: mdl-25484066

ABSTRACT

K-ras mutations promote angiogenesis in lung cancer and contribute to the drug resistance of cancer cells. It is not clear whether K-ras mutated adenocarcinomas are sensitive to anti-angiogenic therapy with monoclonal antibodies (mAbs) that target vascular endothelial growth factor (VEGF). Anti-angiogenic mAbs are usually delivered systemically, but only a small proportion reaches the lung after intravenous injection. We investigated the relevance of a non-invasive pulmonary route for the delivery of anti-VEGF mAbs in the mouse K-ras(LA1) model. We found that pulmonary delivery of these mAbs significantly reduced the number of tumor lesions and inhibited malignant progression. The antitumor effect involves the VEGFR2-dependent inhibition of blood vessel growth, which impairs tumor proliferation. Pharmacokinetic analysis of aerosolized anti-VEGF showed its low rate of passage into the bloodstream, suggesting that this delivery route is associated with reduced systemic side effects. Our findings highlight the value of the aerosol route for administration of anti-angiogenic mAbs in pulmonary adenocarcinoma with K-ras activating-mutations.


Subject(s)
Adenocarcinoma/drug therapy , Antibodies, Monoclonal/pharmacology , Lung Neoplasms/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Aerosols , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Area Under Curve , Biological Availability , Blotting, Western , Cell Proliferation/drug effects , Cells, Cultured , Humans , Immunohistochemistry , Injections, Intraperitoneal , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/prevention & control , Proto-Oncogene Proteins p21(ras)/genetics , Treatment Outcome , Vascular Endothelial Growth Factor A/immunology , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL