Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters











Publication year range
1.
J Environ Manage ; 369: 122258, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39213856

ABSTRACT

This review focuses on the alternative uses of Elodea nuttallii (Planch.) H.St.John biomass. Elodea nuttallii is as an aquatic invasive alien species classified in the EU as a Species of Union Concern. Its dense monospecific stands affect both aquatic ecosystems and human activities, thereby requiring specific monitoring and management measures. The handling of E. nuttallii has a high economic cost, and the biomass removed from natural environments is considered a mere waste product. The need to implement circular economy, reducing waste and preserving natural capital, has led to the research for the reuse and valorisation of waterweed biomasses, such as E. nuttallii. This review critically assesses the feasibility and potential applications of E. nuttallii biomass in various sectors, including bioenergy production, extraction of metabolites, and fertilization. Out of more than 200 articles from 1965 to 2023, only 16 were found to deal with the use of harvested biomass, all within the last 12 years. This review highlights that the valorisation of E. nuttallii biomass is an underrepresented topic in scientific literature, and therefore in industrial sectors. Studies on biogas production are the most represented and have shown that E. nuttallii chemical composition is suitable for energy production, but is better suited as an additional feedstock to other biomasses already used for this purpose. New more cost-effective applications, such as animal feed and biosorbent, should be further addressed. By investigating alternative uses for E. nuttallii biomass, this review contributes to the development of sustainable practices that would turn a costly waste into a valuable resource.

2.
PLoS One ; 18(10): e0292608, 2023.
Article in English | MEDLINE | ID: mdl-37824461

ABSTRACT

Mineral springs in Massif Central, France can be characterized by higher levels of natural radioactivity in comparison to the background. The biota in these waters is constantly under radiation exposure mainly from the α-emitters of the natural decay chains, with 226Ra in sediments ranging from 21 Bq/g to 43 Bq/g and 222Rn activity concentrations in water up to 4600 Bq/L. This study couples for the first time micro- and nanodosimetric approaches to radioecology by combining GATE and Geant4-DNA to assess the dose rates and DNA damages to microorganisms living in these naturally radioactive ecosystems. It focuses on unicellular eukaryotic microalgae (diatoms) which display an exceptional abundance of teratological forms in the most radioactive mineral springs in Auvergne. Using spherical geometries for the microorganisms and based on γ-spectrometric analyses, we evaluate the impact of the external exposure to 1000 Bq/L 222Rn dissolved in the water and 30 Bq/g 226Ra in the sediments. Our results show that the external dose rates for diatoms are significant (9.7 µGy/h) and comparable to the threshold (10 µGy/h) for the protection of the ecosystems suggested by the literature. In a first attempt of simulating the radiation induced DNA damage on this species, the rate of DNA Double Strand Breaks per day is estimated to 1.11E-04. Our study confirms the significant mutational pressure from natural radioactivity to which microbial biodiversity has been exposed since Earth origin in hydrothermal springs.


Subject(s)
Radioactivity , Radium , Radon , Radon/analysis , Monte Carlo Method , Ecosystem , Radiometry , Water , DNA
3.
Front Plant Sci ; 14: 1257500, 2023.
Article in English | MEDLINE | ID: mdl-37810403

ABSTRACT

Introduction: Phaeodactylum tricornutum is a model species frequently used to study lipid metabolism in diatoms. When exposed to a nutrient limitation or starvation, diatoms are known to accumulate neutral lipids in cytoplasmic lipid droplets (LDs). Those lipids are produced partly de novo and partly from the recycle of plastid membrane lipids. Under a nitrogen resupply, the accumulated lipids are catabolized, a phenomenon about which only a few data are available. Various strains of P. tricornutum have been isolated around the world that may differ in lipid accumulation patterns. Methods: To get further information on this topic, two genetically distant ecotypes of P. tricornutum (Pt1 and Pt4) have been cultivated under nitrogen deprivation during 11 days followed by a resupply period of 3 days. The importance of cytoplasmic LDs relative to the plastid was assessed by a combination of confocal laser scanning microscopy and cell volume estimation using bright field microscopy pictures. Results and discussion: We observed that in addition to a basal population of small LDs (0.005 µm3 to 0.7 µm3) present in both strains all along the experiment, Pt4 cells immediately produced two large LDs (up to 12 µm3 after 11 days) while Pt1 cells progressively produced a higher number of smaller LDs (up to 7 µm3 after 11 days). In this work we showed that, in addition to intracellular available space, lipid accumulation may be limited by the pre-starvation size of the plastid as a source of membrane lipids to be recycled. After resupplying nitrogen and for both ecotypes, a fragmentation of the largest LDs was observed as well as a possible migration of LDs to the vacuoles that would suggest an autophagic degradation. Altogether, our results deepen the understanding of LDs dynamics and open research avenues for a better knowledge of lipid degradation in diatoms.

4.
RSC Adv ; 13(26): 17611-17620, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37313002

ABSTRACT

In this study, the microalgae Haematococcus pluvialis were cultivated in wastewater inoculated into low-density polypropylene plastic air pillows (LDPE-PAPs) under a light stress. The cells were irradiated to different light stresses using white LED lights (WLs) as the control, and broad-spectrum lights (BLs) as a test for the period of 32 days. It was observed that the inoculum (70 × 102 mL-1 cells) of H. pluvialis algal cells increased almost 30 and 40 times in WL and BL, respectively, at day 32 coherent to its biomass productivity. Higher lipid concentration of up to 36.85 µg mL-1 was observed in BL irradiated cells compared to 13.215 µg L-1 dry weight of biomass in WL. The chlorophyll 'a' content was 2.6 times greater in BL (3.46 µg mL-1) compared to that in WL (1.32 µg mL-1) with total carotenoids being about 1.5 times greater in BL compared to WL on day 32. The yield of red pigment 'Astaxanthin' was about 27% greater in BL than in WL. The presence, of different carotenoids including astaxanthin was also confirmed by HPLC, whereas fatty acid methyl esters (FAMEs) were confirmed by GC-MS. This study further confirmed that wastewater alongwith with light stress is suitable for the biochemical growth of H. pluvialis with good biomass yield as well as carotenoid accumulation. Additionally there was 46% reduction in chemical oxygen demand (COD) in a far more efficient manner when cultured in recycled LDPE-PAP. Such type of cultivation of H. pluvialis made the overall process economical and suitable for upscaling to produce value-added products such as lipids, pigments, biomass, and biofuel for commercial applications.

5.
Mar Drugs ; 21(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36976225

ABSTRACT

Astaxanthin (3,3-dihydroxy-ß, ß-carotene-4,4-dione) is a ketocarotenoid synthesized by Haematococcus pluvialis/lacustris, Chromochloris zofingiensis, Chlorococcum, Bracteacoccus aggregatus, Coelastrella rubescence, Phaffia rhodozyma, some bacteria (Paracoccus carotinifaciens), yeasts, and lobsters, among others However, it is majorly synthesized by Haematococcus lacustris alone (about 4%). The richness of natural astaxanthin over synthetic astaxanthin has drawn the attention of industrialists to cultivate and extract it via two stage cultivation process. However, the cultivation in photobioreactors is expensive, and converting it in soluble form so that it can be easily assimilated by our digestive system requires downstream processing techniques which are not cost-effective. This has made the cost of astaxanthin expensive, prompting pharmaceutical and nutraceutical companies to switch over to synthetic astaxanthin. This review discusses the chemical character of astaxanthin, more inexpensive cultivating techniques, and its bioavailability. Additionally, the antioxidant character of this microalgal product against many diseases is discussed, which can make this natural compound an excellent drug to minimize inflammation and its consequences.


Subject(s)
Antioxidants , Chlorophyceae , Antioxidants/pharmacology , Biological Availability , Xanthophylls/pharmacology , Xanthophylls/chemistry , Carotenoids
6.
Mar Drugs ; 21(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36827166

ABSTRACT

Oleaginous diatoms accumulate lipids of biotechnological interest when exposed to nutrient stress conditions such as nitrogen starvation. While accumulation mechanisms are well-known and have been engineered to improve lipid production, degradation mechanisms remain poorly investigated in diatoms. Identifying lipid-degrading enzymes is the initial step to understanding the catabolic processes. In this study, an in silico screening of the genome of Phaeodactylum tricornutum led to the identification of 57 putative triacylglycerol lipases (EC 3.1.1.3) grouped in 4 families. Further analysis revealed the presence of conserved domains and catalytic residues of lipases. Physico-chemical characteristics and subcellular localization predictions highlighted that a majority of these putative proteins are hydrophilic and cytosolic, suggesting they could be recruited to lipid droplets directly from the cytosol. Among the 57 identified putative proteins, three lipases were identified as possibly involved in lipophagy due to a potential vacuolar localization. The expression of the mRNA corresponding to the 57 proteins was then searched in 3 transcriptomic datasets obtained under nitrogen starvation. Nine genes were highly regulated and were considered as encoding enzymes with a probable important function in lipid catabolism. A tertiary structure prediction of these nine candidates yielded eight functional 3D models. Among those, two downregulated enzymes, Phatr3_J54974 and Phatr3_EG00720, were highlighted as good targets for future functional genomics and purification studies to investigate their role in lipid degradation.


Subject(s)
Diatoms , Computational Biology , Diatoms/metabolism , Gene Expression Profiling , Lipase/metabolism , Lipids , Nitrogen/metabolism
7.
Plant J ; 113(5): 934-953, 2023 03.
Article in English | MEDLINE | ID: mdl-36582182

ABSTRACT

Seed longevity, the capacity to remain alive during dry storage, is pivotal to germination performance and is essential for preserving genetic diversity. It is acquired during late maturation concomitantly with seed degreening and the de-differentiation of chloroplasts into colorless, non-photosynthetic plastids, called eoplasts. As chlorophyll retention leads to poor seed performance upon sowing, these processes are important for seed vigor. However, how these processes are regulated and connected to the acquisition of seed longevity remains poorly understood. Here, we show that such a role is at least provided by ABSCISIC ACID INSENSITIVE 4 (ABI4) in the legume Medicago truncatula. Mature seeds of Mtabi4 mutants contained more chlorophyll than wild-type seeds and exhibited a 75% reduction in longevity and reduced dormancy. MtABI4 was necessary to stimulate eoplast formation, as evidenced by the significant delay in the dismantlement of photosystem II during the maturation of mutant seeds. Mtabi4 seeds also exhibited transcriptional deregulation of genes associated with retrograde signaling and transcriptional control of plastid-encoded genes. Longevity was restored when Mtabi4 seeds developed in darkness, suggesting that the shutdown of photosynthesis during maturation, rather than chlorophyll degradation per se, is a requisite for the acquisition of longevity. Indeed, the shelf life of stay green mutant seeds that retained chlorophyll was not affected. Thus, ABI4 plays a role in coordinating the dismantlement of chloroplasts during seed development to avoid damage that compromises the acquisition of seed longevity. Analysis of Mtabi4 Mtabi5 double mutants showed synergistic effects on chlorophyll retention and longevity, suggesting that they act via parallel pathways.


Subject(s)
Abscisic Acid , Medicago truncatula , Abscisic Acid/metabolism , Medicago truncatula/physiology , Transcription Factors/metabolism , Seeds/metabolism , Germination/genetics , Gene Expression Regulation, Plant
8.
S Afr J Physiother ; 79(1): 1877, 2023.
Article in English | MEDLINE | ID: mdl-38855076

ABSTRACT

Background: Female genital mutilation (FGM/C) defined as 'all procedures that involve partial or total removal of the external female genitalia, or other injury to the female genital organs for non-medical reasons' is a cultural practice having several consequences on women's health. Medical and sexual consequences have been documented, but the link between FGM/C and the development of psychological symptoms is not clearly established. The influence of contextual factors is poorly understood. Objectives: To evaluate the psychological impact of FGM/C and how victims experience it. Method: A mixed method systematic review was conducted. The inclusion criteria were observational primary studies involving women who had undergone FGM/C and had experienced psychological symptoms. Publication bias was assessed by using the Mixed Methods Appraisal Tool. A configurative strategy that involved a comparison of quantitative and qualitative data was used, followed by an analysis of causal link between FGM/C and induced psychological disorders. Results: Fourteen studies were included. Post-traumatic stress disorder (PTSD), depression, anxiety and somatisation showed a significantly higher prevalence in women who have experienced FGM/C versus non-mutilated women. Female genital mutilation type II or III were identified as predictors of disorder severity. Qualitative studies showed a significant difference in the perception of FGM/C between immigrant and non-immigrant women, as well as the multidimensional nature of the factors influencing disorders' onsets. Conclusion: Our study showed a high association of FGM/C (and its degree of severity) with psychological disorders such as PTSD, depression, anxiety and somatisation. It also illustrates contextual factors, including socio-cultural factors that may influence the intensity of these psychological disorders. Clinical implications: It is important for health professionals to be aware of the psychological consequences of FGM/C and the different factors influencing FGM/C perception. Indeed, a feeling of 'Being abnormal' can be awakened among patients because of health professionals' incorrect behaviours.

9.
Chemosphere ; 305: 135371, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35724717

ABSTRACT

Discharge of untreated or partially treated toxic dyes containing wastewater from textile industries into water streams is hazardous for environment. The use of heavy metal(s) rich dyes, which are chemically active in azo and sulfur content(s) has been tremendously increasing in last two decades. Conventional physical and chemical treatment processes help to eliminate the dyes from textile wastewater but generates the secondary pollutants which create an additional environmental problem. Microalgae especially the diatoms are promising candidate for dye remediation from textile wastewater. Nanoporous diatoms frustules doped with nanocomposites increase the wastewater remediation efficiency due to their adsorption properties. On the other hand, microalgae with photosynthetic microbial fuel cell have shown significant results in being efficient, cost effective and suitable for large scale phycoremediation. This integrated system has also capability to enhance lipid and carotenoids biosynthesis in microalgae while simultaneously generating the bioelectricity. The present review highlights the textile industry wastewater treatment by live and dead diatoms as well as microalgae such as Chlorella, Scenedesmus, Desmodesmus sp. etc. This review engrosses applicability of diatoms and microalgae as an alternative way of conventional dye removal techniques with techno-economic aspects.


Subject(s)
Chlorella , Diatoms , Microalgae , Biomass , Coloring Agents/chemistry , Wastewater/chemistry
11.
Environ Res ; 212(Pt D): 113454, 2022 09.
Article in English | MEDLINE | ID: mdl-35597291

ABSTRACT

Microbial fuel cells are biochemical factories which besides recycling wastewater are electricity generators, if their low power density can be scaled up. This also adds up to work on many factors responsible to increase the cost of running a microbial fuel cell. As a result, the first step is to use environment friendly dead organic algae biomass or even living algae cells in a microbial fuel cell, also referred to as microalgal microbial fuel cells. This can be a techno-economic aspect not only for treating textile wastewater but also an economical way of obtaining value added products and bioelectricity from microalgae. Besides treating wastewater, microalgae in its either form plays an essential role in treating dyes present in wastewater which essentially include azo dyes rich in synthetic ions and heavy metals. Microalgae require these metals as part of their metabolism and hence consume them throughout the integration process in a microbial fuel cell. In this review a detail plan is laid to discuss the treatment of industrial effluents (rich in toxic dyes) employing microbial fuel cells. Efforts have been made by researchers to treat dyes using microbial fuel cell alone or in combination with catalysts, nanomaterials and microalgae have also been included. This review therefore discusses impact of microbial fuel cells in treating wastewater rich in textile dyes its limitations and future aspects.


Subject(s)
Bioelectric Energy Sources , Environmental Pollutants , Microalgae , Coloring Agents/metabolism , Environmental Pollutants/metabolism , Microalgae/metabolism , Wastewater
12.
Chemosphere ; 291(Pt 1): 132692, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34718006

ABSTRACT

Perovskite solar cells (PVSCs) convert solar energy into electrical energy. Current study employs fabrication of PVSCs using calcium titanate (CaTiO3) prepared by co-precipitation of TiO2 nanoparticle (NP) and CaCO3 NP with later synthesized from mollusc shell. Furthermore, frustules of diatom, Nitzschia palea were used to prepare silica doped CaTiO3 (Si-CaTiO3) nanocomposite. CaTiO3 NP and Si-CaTiO3 nanocomposites film were made on fluorine doped tin oxide (FTO) glass plate using spin coater separately for two different kinds of PVSCs tested at different intensities of light. The perovskite materials were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray (EDX) spectroscopy. Thickness of the film was measured by profilometer. The maximum power density (PDmax) of CaTiO3 made PVSCs was 0.235 mW/m2 under white LED light and 0.041 mW/m2 in broad spectrum light. Whereas, PDmax of PVSCs with Si-CaTiO3 was higher about 0.0083 mW/m2 in broad spectrum light and was 0.0039 mW/m2 in white LED light. This is due to the fact that CaTiO3 allowed blue and red light in broad spectrum to pass through it without being absorbed compared to white LED light which gets reflected. On the offset, in PVSC made of Si-CaTiO3 since diatoms frustules are made up of nanoporous architecture it increases the overall porosity of PVSC making them potentially more efficient in broad spectrum of light compared to white LED light.


Subject(s)
Diatoms , Nanoparticles , Animals , Biocompatible Materials , Calcium Compounds , Mollusca , Oxides , Spectroscopy, Fourier Transform Infrared , Titanium , X-Ray Diffraction
13.
Chemosphere ; 288(Pt 2): 132589, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34678344

ABSTRACT

Photosynthetic microbial fuel cells (PMFCs) with microalgae have huge potential for treating wastewater while simultaneously converting light energy into electrical energy. The efficiency of such cells directly depends on algal growth, which depends on light intensity. Higher light intensity results in increased potential as well as enhancement in generation of biomass rich in biopolymers. Such biopolymers are produced either by microbes at anode and algae at cathode or vice versa. The biopolymers recovered from these biological sources can be added in wastewater alone or in combination with nanomaterials to act as nanoadsorbents. These nanoadsorbents further increase the efficiency of PMFC by removing the pollutants like metals and dyes. In this review firstly the effect of different light intensities on the growth of microalgae, importance of diatoms in a PMFC and their impact on PMFCs efficiencies have been narrated. Secondly recovery of biopolymers from different biological sources and their role in removal of metals, dyes along with their impact on circular bioeconomy have been discussed. Thereafter bottlenecks and future perspectives in this field of research have been narrated.


Subject(s)
Bioelectric Energy Sources , Environmental Pollutants , Microalgae , Biomass , Biopolymers
14.
Front Plant Sci ; 12: 756421, 2021.
Article in English | MEDLINE | ID: mdl-34858459

ABSTRACT

Diatoms are feedstock for the production of sustainable biocommodities, including biofuel. The biochemical characterization of newly isolated or genetically modified strains is seminal to identify the strains that display interesting features for both research and industrial applications. Biochemical quantification of organic macromolecules cellular quotas are time-consuming methodologies which often require large amount of biological sample. Vibrational spectroscopy is an essential tool applied in several fields of research. A Fourier transform infrared (FTIR) microscopy-based imaging protocol was developed for the simultaneous cellular quota quantification of lipids, carbohydrates, and proteins of the diatom Phaeodactylum tricornutum. The low amount of sample required for the quantification allows the high throughput quantification on small volume cultures. A proof of concept was performed (1) on nitrogen-starved experimental cultures and (2) on three different P. tricornutum wild-type strains. The results are supported by the observation in situ of lipid droplets by confocal and brightfield microscopy. The results show that major differences exist in the regulation of lipid metabolism between ecotypes of P. tricornutum.

15.
Mar Drugs ; 19(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34822519

ABSTRACT

Biocompatible extraction emerges recently as a means to reduce costs of biotechnology processing of microalgae. In this frame, this study aimed at determining how specific culture conditions and the associated cell morphology impact the biocompatibility and the extraction yield of ß-carotene from the green microalga Dunaliella salina using n-decane. The results highlight the relationship between the cell disruption yield and cell volume, the circularity and the relative abundance of naturally permeabilized cells. The disruption rate increased with both the cell volume and circularity. This was particularly obvious for volume and circularity exceeding 1500 µm3 and 0.7, respectively. The extraction of ß-carotene was the most biocompatible with small (600 µm3) and circular cells (0.7) stressed in photobioreactor (30% of carotenoids recovery with 15% cell disruption). The naturally permeabilized cells were disrupted first; the remaining cells seems to follow a gradual permeabilization process: reversibility (up to 20 s) then irreversibility and cell disruption. This opens new carotenoid production schemes based on growing robust ß-carotene enriched cells to ensure biocompatible extraction.


Subject(s)
Microalgae , beta Carotene/metabolism , Animals , Aquatic Organisms , Biotechnology , Photobioreactors , beta Carotene/chemistry
16.
Bioengineered ; 12(2): 9531-9549, 2021 12.
Article in English | MEDLINE | ID: mdl-34709977

ABSTRACT

Microalgae have been recognized as one of the most efficient microorganisms to remediate industrial effluents. Among microalgae diatoms are silica shelled unicellular eukaryotes, found in all types of water bodies and flourish very well even in wastewater. They have their silica cell wall made up of nano arrayed pores arranged in a uniform fashion. Therefore, they act as smart nanocontainers to adsorb various trace metals, dyes, polymers, and drugs which are hazardous to human as well to aquatic life. The beautiful nanoarchitecture in diatoms allows them to easily bind to ligands of choice to form a nanocomposite structure with the pollutants which can be a chemical or biological component. Such naturally available diatom nanomaterials are economical and highly sensitive compared to manmade artificial silica nanomaterials to help in facile removal of the toxic pollutants from wastewater. This review is thus focused on employing diatoms to remediate various pollutants such as heavy metals, dyes, hydrocarbons detected in the wastewater. It also includes different microalgae as biosensors for determination of pollutants in effluents and the perspectives for nanotechnological applications in the field of remediating pollutants through microalgae. The review also discusses in length the hurdles and perspectives of employing microalgae in wastewater remediation.


Subject(s)
Biosensing Techniques , Diatoms/growth & development , Metals, Heavy/analysis , Microalgae/growth & development , Nanoparticles , Wastewater/chemistry , Water Pollutants, Chemical/analysis
17.
Bioresour Technol ; 340: 125707, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34371336

ABSTRACT

Haematococcus pluvialis is a green alga that can accumulate high astaxanthin content, a commercially demanding market keto food. Due to its high predicted market value of about 3.4 billion USD in 2027, it is essential to increase its production. Therefore, it is crucial to understand the genetic mechanism and gene expressions profile during astaxanthin synthesis. The effect of poly- and mono-chromatic light of different wavelengths and different intensities have shown to influence the gene expression towards astaxanthin production. This includes transcriptomic gene analysis in H. pluvialis underneath different levels of illumination stress. This review has placed the most recent data on the effects of light on bioastaxanthin production in the context of previous studies, which were more focused on the biochemical and physiological sides. Doing so, it contributes to delineate new ways along the biotechnological process with the aim to increase bioastaxanthin production while decreasing production costs.


Subject(s)
Chlorophyceae , Chlorophyta , Chlorophyta/genetics , Transcriptome , Xanthophylls
18.
Environ Res ; 201: 111550, 2021 10.
Article in English | MEDLINE | ID: mdl-34224710

ABSTRACT

Wastewater management and its treatment have revolutionized the industry sector into many innovative techniques. However, the cost of recycling via chemical treatment has major issues especially in economically poor sectors. On the offset, one of the most viable and economical techniques to clean wastewater is by growing microalgae in it. Since wastewater is rich in nitrates, phosphates and other trace elements, the environment is suitable for the growth of microalgae. On the other side, the cost of harvesting microalgae for its secondary metabolites is burgeoning. While simultaneously growing of microalgae in photobioreactors requires regular feeding of the nutrients and maintenance which increases the cost of operation and hence cost of its end products. The growth of microalgae in waste waters makes the process not only economical but they also manufacture more amounts of value added products. However, harvesting of these values added products is still a cumbersome task. On the offset, it has been observed that pretreating the microalgal biomass with ultrasonication allows easy oozing of the secondary metabolites like oil, proteins, carbohydrates and methane at much lower cost than that required for their extraction. Among microalgae diatoms are more robust and have immense crude oil and are rich in various value added products. However, due to their thick silica walls they do not ooze the metabolites until the mechanical force on their walls reaches certain threshold energy. In this review recycling of wastewater using microalgae and its pretreatment via ultrasonication with special reference to diatoms is critically discussed. Perspectives on circular bioeconomy and knowledge gaps for employing microalgae to recycle wastewater have been comprehensively narrated.


Subject(s)
Diatoms , Microalgae , Agriculture , Wastewater
19.
Front Plant Sci ; 12: 760516, 2021.
Article in English | MEDLINE | ID: mdl-35126407

ABSTRACT

Microalgae have adapted to face abiotic stresses by accumulating energy storage molecules such as lipids, which are also of interest to industries. Unfortunately, the impairment in cell division during the accumulation of these molecules constitutes a major bottleneck for the development of efficient microalgae-based biotechnology processes. To address the bottleneck, a multidisciplinary approach was used to study the mechanisms involved in the transition from nitrogen repletion to nitrogen starvation conditions in the marine diatom Phaeodactylum tricornutum that was cultured in a turbidostat. Combining data demonstrate that the different steps of nitrogen deficiency clustered together in a single state in which cells are in equilibrium with their environment. The switch between the nitrogen-replete and the nitrogen-deficient equilibrium is driven by intracellular nitrogen availability. The switch induces a major gene expression change, which is reflected in the reorientation of the carbon metabolism toward an energy storage mode while still operating as a metabolic flywheel. Although the photosynthetic activity is reduced, the chloroplast is kept in a stand-by mode allowing a fast resuming upon nitrogen repletion. Altogether, these results contribute to the understanding of the intricate response of diatoms under stress.

20.
Bioelectrochemistry ; 137: 107588, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33147566

ABSTRACT

This study aims to employ a pulsed electric field (PEF) treatment for the biocompatible (non-destructive) extraction of proteins from living cells of the green microalga Haematococcus pluvialis. Using a field strength of 1 kV cm-1, we achieved the extraction of 10.2 µg protein per mL of culture, which corresponded to 46% of the total amount of proteins that could be extracted by complete destructive extraction (i.e. the grinding of biomass with glass beads). We found that the extraction yield was not improved by stronger field strengths and was not dependent on the pulse frequency. A biocompatibility index (BI) was defined as the relative abundance of cells that remained alive after the PEF treatment. This index relied on measurements of several physiological parameters after a PEF treatment. It was found that at 1 kV cm-1 that cultures recovered after 72 h. Therefore, these PEF conditions constituted a good compromise between protein extraction efficiency and culture survival. To characterize the PEF treatment further at a molecular level, mass spectrometry-based proteomics analyses of PEF-prepared extracts was used. This led to the identification of 52 electro-extracted proteins. Of these, only 16 proteins were identified when proteins were extracted with PEF at 0.5 cm-1. They belong to core metabolism, stress response and cell movement. Unassigned proteins were also extracted. Their physiological implications and possible utilization in food as alimentary complements are discussed.


Subject(s)
Chlorophyta/chemistry , Electricity , Plant Proteins/isolation & purification , Biotechnology , Fresh Water
SELECTION OF CITATIONS
SEARCH DETAIL