Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(31): 41257-41270, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39048517

ABSTRACT

Recent developments in semiconductor-based surface-enhanced Raman scattering (SERS) have achieved numerous advancements, primarily centered on the chemical mechanism. However, the role of the electromagnetic (electromagnetic mechanism) contribution in advancing semiconductor SERS substrates is still underexplored. In this study, we developed a SERS substrate based on densely aligned α-type MoO3 (α-MoO3) semiconductor nanorods (NRs) with rectangular parallelepiped ribbon shapes with width measuring several hundred nanometers. These structural attributes strongly affect light transport in the visible range by multiple light scattering generated in narrow gaps between NRs, contributing to the improvement of SERS performance. Engineering the nanostructure and chemical composition of NRs realized high SERS sensitivity with an enhancement factor of 2 × 108 and a low detection limit of 5 × 10-9 M for rhodamine 6G (R6G) molecules, which was achieved by the stoichiometric NR sample with strong light scattering. Furthermore, it was observed that the scattering length becomes significantly shorter compared with the excitation wavelength in the visible regime, which indicates that light transport is strongly modified by mesoscopic interference related to Anderson localization. Additionally, high electric fields were found to be localized on the NR surfaces, depending on the excitation wavelength, similar to the SERS response. These optical phenomena indicate that electromagnetic excitation processes play an important role in plasmon-free SERS platforms based on α-MoO3 NRs. We postulate that our study provides important guidance for designing effective EM-based SERS-active semiconductor substrates.

2.
Adv Mater ; 35(28): e2300110, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37130792

ABSTRACT

Developing technology to realize oxide-based nanoscale planar integrated circuits is in high demand for next-generation multifunctional electronics. Oxide circuits can have a variety of unique functions, including ferromagnetism, ferroelectricity, multiferroicity, superconductivity, and mechanical flexibility. In particular, for spin-transistor applications, the wide tunability of the physical properties due to the presence of multiple oxide phases is valuable for precise conductivity matching between the channel and ferromagnetic electrodes. This feature is essential for realistic spin-transistor operations. Here, a substantially large magnetoresistance (MR) ratio of up to ≈140% is demonstrated for planar-type (La,Sr)MnO3 (LSMO)-based spin-valve devices. This MR ratio is 10-100 times larger than the best values obtained for semiconductor-based planar devices, which have been studied over the past three decades. This structure is prepared by implementing an artificial nanolength Mott-insulator barrier region using the phase transition of metallic LSMO. The barrier height of the Mott-insulator region is only 55 meV, which enables the large MR ratio. Furthermore, a successful current modulation, which is a fundamental functionality for spin transistors, is shown. These results open up a new avenue for realizing oxide planar circuits with unique functionalities that conventional semiconductors cannot achieve.


Subject(s)
Catheters , Electronics , Electric Conductivity , Electrodes , Oxides
3.
Sci Rep ; 13(1): 4872, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36964147

ABSTRACT

Spin waves (SWs), an ultra-low power magnetic excitation in ferro or antiferromagnetic media, have tremendous potential as transport less data carriers for post-CMOS technology using their wave interference properties. The concept of magnon interference originates from optical interference, resulting in a historical taboo of maintaining an identical wavevector for magnon interference-based devices. This makes the attainment of on-chip design reconfigurability challenging owing to the difficulty in phase tuning via external fields. Breaking the taboo, this study explores a novel technique to systematically control magnon interference using asymmetric wavevectors from two different SW modes (magnetostatic surface SWs and backward volume magnetostatic SWs) in a microstructured yttrium iron garnet crossbar. Using this system, we demonstrate phase reconfigurability in the interference pattern by modulating the thermal landscape, modifying the dispersion of the interfering SW modes. Thus, we manifest that such a tunable interference can be used to implement reconfigurable logic gates operating between the XNOR and XOR modes by using symmetric and asymmetric interference, respectively.

4.
Sci Rep ; 13(1): 5260, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37002272

ABSTRACT

Reservoir computing is a brain heuristic computing paradigm that can complete training at a high speed. The learning performance of a reservoir computing system relies on its nonlinearity and short-term memory ability. As physical implementation, spintronic reservoir computing has attracted considerable attention because of its low power consumption and small size. However, few studies have focused on developing the short-term memory ability of the material itself in spintronics reservoir computing. Among various magnetic materials, spin glass is known to exhibit slow magnetic relaxation that has the potential to offer the short-term memory capability. In this research, we have quantitatively investigated the short-term memory capability of spin cluster glass based on the prevalent benchmark. The results reveal that the magnetization relaxation of Co, Si-substituted Lu3Fe5O12 with spin glass behavior can provide higher short-term memory capacity than ferrimagnetic material without substitution. Therefore, materials with spin glass behavior can be considered as potential candidates for constructing next-generation spintronic reservoir computing with better performance.

5.
Nat Commun ; 13(1): 5631, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36163469

ABSTRACT

The two-dimensional electron gas (2DEG) formed at interfaces between SrTiO3 (STO) and other oxide insulating layers is promising for use in efficient spin-charge conversion due to the large Rashba spin-orbit interaction (RSOI). However, these insulating layers on STO prevent the propagation of a spin current injected from an adjacent ferromagnetic layer. Moreover, the mechanism of the spin-current flow in these insulating layers is still unexplored. Here, using a strongly correlated polar-metal LaTiO3+δ (LTO) interlayer and the 2DEG formed at the LTO/STO interface in an all-epitaxial heterostructure, we demonstrate giant spin-to-charge current conversion efficiencies, up to ~190 nm, using spin-pumping ferromagnetic-resonance voltage measurements. This value is the highest among those reported for all materials, including spin Hall systems. Our results suggest that the strong on-site Coulomb repulsion in LTO and the giant RSOI of LTO/STO may be the key to efficient spin-charge conversion with suppressed spin-flip scattering. Our findings highlight the hidden inherent possibilities of oxide interfaces for spin-orbitronics applications.

6.
Sci Rep ; 12(1): 11105, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35773387

ABSTRACT

Magnonics, an emerging research field that uses the quanta of spin waves as data carriers, has a potential to dominate the post-CMOS era owing to its intrinsic property of ultra-low power operation. Spin waves can be manipulated by a wide range of parameters; thus, they are suitable for sensing applications in a wide range of physical fields. In this study, we designed a highly sensitive, simple structure, and ultra-low power magnetic sensor using a simple CoFeB/Y3Fe5O12 bilayer structure. We demonstrated that the CoFeB/Y3Fe5O12 bilayer structure can create a sharp rejection band in its spin-wave transmission spectra. The lowest point of this strong rejection band allows the detection of a small frequency shift owing to the external magnetic field variation. Experimental observations revealed that such a bilayer magnetic sensor exhibits 20 MHz frequency shifts upon the application of an external magnetic field of 0.5 mT. Considering the lowest full width half maximum, which is about 2 MHz, a sensitivity of 10-2 mT order can be experimentally achieved. Furthermore, the higher sensitivity in the order of 10-6 T (µT) has been demonstrated using the sharp edge of the rejection band of the CoFeB/Y3Fe5O12 bilayer device. A Y-shaped spin waves interference device with two input arms consisting of CoFeB/Y3Fe5O12 and Y3Fe5O12 has been theoretically investigated. We proposed that such a structure can demonstrate a magnetic sensitivity in the range of [Formula: see text] T (nT) at room temperature. The sensitivity of the sensor can be further enhanced by tuning the width of the CoFeB metal stripe.

7.
Adv Mater ; 32(14): e1906003, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32103572

ABSTRACT

Strontium titanate (SrTiO3 or STO) is important for oxide-based electronics as it serves as a standard substrate for a wide range of high-temperature superconducting cuprates, colossal magnetoresistive manganites, and multiferroics. Moreover, in its heterostructures with different materials, STO exhibits a broad spectrum of important physics such as superconductivity, magnetism, the quantum Hall effect, giant thermoelectric effect, and colossal ionic conductivity, most of which emerge in a two-dimensional (2D) electron gas (2DEG) formed at an STO interface. However, little is known about its counterpart system, a 2D hole gas (2DHG) at the STO interface. Here, a simple way of realizing a 2DHG with an ultrahigh mobility of 24 000 cm2 V-1 s-1 is demonstrated using an interface between STO and a thin amorphous FeOy layer, made by depositing a sub-nanometer-thick Fe layer on an STO substrate at room temperature. This mobility is the highest among those reported for holes in oxides. The carrier type can be switched from p-type (2DHG) to n-type (2DEG) by controlling the Fe thickness. This unprecedented method of forming a 2DHG at an STO interface provides a pathway to unexplored hole-related physics in this system and enables extremely low-cost and high-speed oxide electronics.

8.
Sci Rep ; 7(1): 8715, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28821803

ABSTRACT

Understanding and controlling the interfacial magnetic properties of ferromagnetic thin films are crucial for spintronic device applications. However, using conventional magnetometry, it is difficult to detect them separately from the bulk properties. Here, by utilizing tunneling anisotropic magnetoresistance in a single-barrier heterostructure composed of La0.6Sr0.4MnO3 (LSMO)/LaAlO3 (LAO)/Nb-doped SrTiO3 (001), we reveal the presence of a peculiar strong two-fold magnetic anisotropy (MA) along the [110]c direction at the LSMO/LAO interface, which is not observed in bulk LSMO. This MA shows unknown behavior that the easy magnetization axis rotates by 90° at an energy of 0.2 eV below the Fermi level in LSMO. We attribute this phenomenon to the transition between the e g and t 2g bands at the LSMO interface. Our finding and approach to understanding the energy dependence of the MA demonstrate a new possibility of efficient control of the interfacial magnetic properties by controlling the band structures of oxide heterostructures.

9.
Nano Lett ; 10(3): 773-6, 2010 Mar 10.
Article in English | MEDLINE | ID: mdl-20158260

ABSTRACT

We used genetically modified tube-shaped tobamoviruses to produce 3 nm aligned magnetic nanoparticles. Amino acid residues facing the central channel of the virus were modified to increase the number of nucleation sites. Energy dispersive X-ray spectroscopy and superconducting quantum interference device analysis suggest that the particles consisted of Co-Pt alloy. The use of tobamovirus mutants is a promising approach to making a variety of components that can be applied to fabricate nanometer-scaled electronic devices.


Subject(s)
Crystallization/methods , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Nanotechnology/methods , Tobamovirus/chemistry , Magnetics , Materials Testing , Molecular Conformation , Particle Size
10.
Anal Bioanal Chem ; 391(7): 2513-9, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18584155

ABSTRACT

Various devices have been developed for verification and application of cellular functions in recent years. In our previous study, we found that local oxidation reactions in the cell membrane could produce submicron sizes of reversible membrane perforations in cells, while more than 80% of treated cells were viable even after perforations; therefore, to date, we have attempted some applications of this mechanism and analyzed their feasibility. In the present study, we developed a rod-shaped device in which the function of membrane perforation is added by utilizing a photosensitizer and, using the device, we have attempted to produce membrane perforations in a large number of cells. Zinc oxide nanorods were synthesized on the basis of the vapor-liquid-solid mechanism and alpha-terthienyl (photosensitizer) was adsorbed onto gold at the top of the rods to add a membrane perforation function. We studied the effect of the oxidation catalytic ability of the rods on rat PC12 cells after pressing and making the rods' growth side come into contact with the base plate pressed onto the cells in a culture plate followed by photoexcitation of the photosensitizer for a certain period of time. It was revealed that water-soluble fluorescent marker molecules added extracellularly were taken up by the cells when the rods were applied at a pressure of 70 g/cm(2), with a light intensity of 0.82 W/cm(2), and with light irradiation for 30 s, as found in the case of the conventional photochemical cell membrane perforation method targeted at a single cell. These results suggest that cell membrane perforation can be successfully achieved in a large number of cells at a time.


Subject(s)
Cell Membrane/chemistry , Cytological Techniques/methods , Nanotubes/chemistry , Oxidants, Photochemical/chemistry , Zinc Oxide/chemistry , Animals , Cell Membrane/metabolism , Fluorescent Dyes/chemistry , Oxidation-Reduction , PC12 Cells , Photochemistry , Photosensitizing Agents/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL