Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(2): e2304210, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37626458

ABSTRACT

Due to their high designability, unique geometric and electronic structures, and surface coordination chemistry, atomically precise metal nanoclusters are an emerging class of functional nanomaterials at the forefront of materials research. However, the current research on metal nanoclusters is mainly fundamental, and their practical applications are still uncharted. The surface binding properties and redox activity of Au24 Pt(PET)18 (PET: phenylethanethiolate, SCH2 CH2 Ph) nanoclusters are herein harnessed as an high-efficiency electrocatalyst for the anchoring and rapid conversion of lithium polysulfides in lithium-sulfur batteries (LSBs). Au24 Pt(PET)18 @G composites are prepared by using the large specific surface area, high porosity, and conductive network of graphene (G) for the construction of battery separator that can inhibit polysulfide shuttle and accelerate electrochemical kinetics. Resultantly, the LSB using a Au24 Pt(PET)18 @G-based separator presents a high reversible specific capacity of 1535.4 mA h g-1 for the first cycle at 0.2 A g-1 and a rate capability of 887 mA h g-1 at 5 A g-1 . After 1000 cycles at 5 A g-1 , the capacity is 558.5 mA h g-1 . This study is a significant step toward the application of metal nanoclusters as optimal electrocatalysts for LSBs and other sustainable energy storage systems.

2.
Nanoscale ; 15(29): 12227-12234, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37378425

ABSTRACT

Silver cluster-assembled materials (SCAMs) are emerging light-emitting materials with molecular-level structural designability and unique photophysical properties. Nevertheless, the widespread application scope of these materials is severely curtailed by their dissimilar structural architecture upon immersing in different solvent media. In this work, we report the designed synthesis of two unprecedented (4.6)-connected three-dimensional (3D) luminescent SCAMs, [Ag12(StBu)6(CF3COO)6(TPEPE)6]n (denoted as TUS 1), TPEPE = 1,1,2,2-tetrakis(4-(pyridin-4-ylethynyl)phenyl)ethene and [Ag12(StBu)6(CF3COO)6(TPVPE)6]n (denoted as TUS 2), TPVPE = 1,1,2,2-tetrakis(4-((E)-2-(pyridin-4-yl)vinyl)phenyl)ethene, composed of an Ag12 cluster core connected by quadridentate pyridine linkers. Attributed to their exceptional fluorescence properties with absolute quantum yield (QY) up to 9.7% and excellent chemical stability in a wide range of solvent polarity, a highly sensitive assay for detecting Fe3+ in aqueous medium is developed with promising detection limits of 0.05 and 0.86 nM L-1 for TUS 1 and TUS 2 respectively, comparable to the standard. Furthermore, the competency of these materials to detect Fe3+ in real water samples reveals their potential application in environmental monitoring and assessment.

3.
Chemistry ; 29(49): e202300706, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37293845

ABSTRACT

Nitrobenzene (NB) is a highly toxic chemical and a cause for concern to human health and the environment. Hence, it is worth designing new efficient and robust sensing platforms for NB. In this study, we present three newly synthesized luminescent silver cluster-based coordination polymers, {[Ag10 (StBu)6 (CF3 COO)4 (hpbt)] (DMAc)2 (CH3 CN)2 }n (hpbt=N,N,N',N'N",N"-hexa(pyridine-4-yl)benzene-1,3,5-triamine), [Ag12 (StBu)6 (CF3 COO)6 (bpva)3 ]n (bpva=9,10-Bis(2-(pyridin-4-yl)vinyl)anthracene), and {[Ag12 (StBu)6 (CF3 COO)6 (bpb)(DMAc)2 (H2 O)2 ] (DMAc)2 }n (bpb=1,4-Bis(4-pyridyl)benzene) composed of Ag10 , Ag12 and Ag12 cluster cores, respectively, connected by multidentate pyridine linkers. In addition, two new luminescent polymorphic silver(I)-based coordination polymers, [Ag(CF3 COO)(dpa)]n (dpa=9,10-di(4-pyridyl)anthracene) referred to as Agdpa (H) and Agdpa (R), where H and R denote hexagon- and rod-like crystal shapes, respectively, have been prepared. The coordination polymers exhibit highly sensitive luminescence quenching effects to NB, attributed to the π-π stacking interactions between the polymers and NB as well as the electron-withdrawing character of NB.

4.
Chem Commun (Camb) ; 59(27): 4000-4003, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36876908

ABSTRACT

Herein, we report two newly synthesized silver cluster-assembled materials (SCAMs), [Ag14(StBu)10(CF3COO)4(bpa)2]n (bpa = 1,2-bis(4-pyridyl)acetylene) and [Ag12(StBu)6(CF3COO)6(bpeb)3]n (bpeb = 1,4-bis(pyridin-4-ylethynyl)benzene) composed of Ag14 and Ag12 chalcogenolate cluster cores, respectively, bridged by acetylenic bispyridine linkers. The linker structures and electrostatic interaction between positively charged SCAMs and negatively charged DNA confer the SCAMs with the ability to suppress the high background fluorescence of single-stranded (ss) DNA probes with SYBR Green I nucleic acid stain, leading to high signal-to-noise ratio for label-free target DNA detection.


Subject(s)
Nucleic Acids , Silver , Silver/chemistry , DNA/chemistry , DNA, Single-Stranded
5.
Angew Chem Int Ed Engl ; 62(13): e202300172, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36688253

ABSTRACT

The unique structural characteristics of three-dimensional (3D) covalent organic frameworks (COFs) like high surface areas, interconnected pore system and readily accessible active sites render them promising platforms for a wide set of functional applications. Albeit promising, the reticular construction of 3D COFs with large pores is a very demanding task owing to the formation of interpenetrated frameworks. Herein we report the designed synthesis of a 3D non-interpenetrated stp net COF, namely TUS-64, with the largest pore size of all 3D COFs (47 Å) and record-low density (0.106 g cm-3 ) by reticulating a 6-connected triptycene-based linker with a 4-connected porphyrin-based linker. Characterized with a highly interconnected mesoporous scaffold and good stability, TUS-64 shows efficient drug loading and controlled release for five different drugs in simulated body fluid environment, demonstrating the competency of TUS-64 as drug nanocarriers.


Subject(s)
Body Fluids , Metal-Organic Frameworks , Porphyrins , Drug Delivery Systems
6.
ACS Appl Mater Interfaces ; 14(42): 48045-48051, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36252155

ABSTRACT

Three-dimensional (3D) covalent organic frameworks (COFs) exemplify a new generation of crystalline extended solids with intriguing structures and unprecedented porosity. Notwithstanding substantial scope, the reticular synthesis of 3D COFs from pre-designed building units leading to new network topologies yet remains a demanding task owing to the shortage of 3D building units and inadequate reversibility of the linkages between the building units. In this work, by linking a tetragonal prism (8-connected) node with a square planar (4-connected) node, we report the first 3D COF with scu-c topology. The new COF, namely, TUS-84, features a two-fold interpenetrated structure with well-defined porosity and a Brunauer-Emmett-Teller surface area of 679 m2 g-1. In drug delivery applications, TUS-84 shows efficient drug loading and sustained release profile.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Delayed-Action Preparations , Porosity
7.
J Chem Phys ; 155(2): 024302, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34266257

ABSTRACT

Icosahedral noble-metal 13-atom nanoclusters (NCs) can form connected structures, which can be regarded as superatomic molecules, by vertex sharing. However, there have been very few reports on the superatomic molecules formed using silver (Ag) as the base element. In this study, we synthesized [Ag23Pd2(PPh3)10Cl7]0 (Pd = palladium, PPh3 = triphenylphosphine, Cl = chloride), in which two icosahedral 13-atom NCs are connected, and elucidated its geometric and electronic structures to clarify what type of superatomic molecules can be synthesized. The results revealed that [Ag23Pd2(PPh3)10Cl7]0 is a synthesizable superatomic molecule. Single crystal x-ray diffraction analysis showed that the metal-metal distances in and between the icosahedral structures of [Ag23Pd2(PPh3)10Cl7]0 are slightly shorter than those of previously reported [Ag23Pt2(PPh3)10Cl7]0, whereas the metal-PPh3 distances are slightly longer. On the basis of several experiments and density functional theory calculations, we concluded that [Ag23Pd2(PPh3)10Cl7]0 and previously reported [Ag23Pt2(PPh3)10Cl7]0 are more stable than [Ag25(PPh3)10Cl7]2+ because of their stronger superatomic frameworks (metal cores). These findings are expected to lead to clear design guidelines for creation of new superatomic molecules.

SELECTION OF CITATIONS
SEARCH DETAIL