Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(39): 51934-51953, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39134794

ABSTRACT

Chlorophenols are one of the major organic pollutants responsible for the contamination of water bodies. This study explores the application of Ni-Zn/CeO2 nanocomposites, synthesized via the aqueous co-precipitation method, as effective adsorbents for the 4-chlorophenol removal from aqueous solutions. The nanocomposites' chemical and structural characteristics were assessed using different physical characterization methods, viz. X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, zeta potential, using a Box-Behnken design within response surface methodology, optimal conditions of pH 3, temperature 20 °C, contact time 120 min, adsorbent dosage 0.05 g, and 4-chlorophenol concentration 50 ppm are identified. Among the nanocomposites tested, NZC 20:10:70, with 20% Ni and 10% Zn, achieves enhanced performance, removing 99.1% of 4-chlorophenol within 2 h. Adsorption kinetics follow the pseudo-second-order model and equilibrium data fit the Freundlich isotherm. Thermodynamic analysis indicates an exothermic and spontaneous process. The adsorption capacity of NZC 20:10:70 shows significant enhancement, growing from 19.85 mg/g at 10 ppm to 96.33 mg/g at 50 ppm initial concentration. Physical characterization confirms NZC 20:10:70's superior properties, including a high surface area of 118.471 m2/g. Evaluating economic viability, NZC 20:10:70 demonstrates robust reusability, retaining 85% efficiency over eight regeneration cycles. These results highlight NZC 20:10:70 as a promising adsorbent for effective and sustainable chlorophenol removal in water treatment.


Subject(s)
Chlorophenols , Nanocomposites , Water Pollutants, Chemical , Zinc , Chlorophenols/chemistry , Nanocomposites/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Zinc/chemistry , Nickel/chemistry , Kinetics , Cerium/chemistry , Water Purification/methods
2.
Heliyon ; 9(11): e22027, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034618

ABSTRACT

Eliminating synthetic dyes and organic contaminants from water is crucial for safeguarding human health and preserving the environment. In this study, we explored the effectiveness of Ag-Cu-CeO2 nanocomposites as adsorbents to remove Congo Red dye from water. Three compositions of Ag-Cu-CeO2 nanocomposites (10:20:70, 15:15:70, and 20:10:70) have been synthesized by the aqueous coprecipitation method. A comprehensive analysis was performed by different techniques including X-ray diffraction, Fourier transform infrared spectroscopy, BET surface area determination, Thermogravimetric analysis, Scanning electron microscopy, and TEM. The synthesized nanocomposites have a dimension of 5 ± 1 nm and a high surface area (51.832-78.361 m2g-1). Among these, the nanocomposite with composition 15:15:70 showed the highest adsorption capacity of 4.71 mg/g adsorption (96.83 % removal) from the 0.8 × 10-4 M (55.6 mg/l) Congo Red solution at pH values of 2 at 20 °C with contact time of 3h. The adsorption data is best fitted in the Freundlich adsorption isotherm and pseudo-second-order kinetic model. The negative values of enthalpy variation (-27.57, -26.43, and -16.73 kJ/mol) demonstrated that the adsorption was spontaneous and exothermic. The cycling run showed a mere 12 % deactivation after five cycles of use thus indicating that Ag-Cu-CeO2 nanocomposites hold great potential as effective and eco-friendly adsorbents to remove Congo Red from water.

SELECTION OF CITATIONS
SEARCH DETAIL