Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 842535, 2022.
Article in English | MEDLINE | ID: mdl-35185933

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are generated under biological stress such as cancer, inflammatory tissue damage, and viral infection. In recent years, with occurrence of global infectious diseases, new discovery on MDSCs functions has been significantly expanded during viral infection and COVID-19. For a successful viral infection, pathogens viruses develop immune evasion strategies to avoid immune recognition. Numerous viruses induce the differentiation and expansion of MDSCs in order to suppress host immune responses including natural killer cells, antigen presenting cells, and T-cells. Moreover, MDSCs play an important role in regulation of immunopathogenesis by balancing viral infection and tissue damage. In this review article, we describe the overview of immunomodulation and genetic regulation of MDSCs during viral infection in the animal model and human studies. In addition, we include up-to-date review of role of MDSCs in SARS-CoV-2 infection and COVID-19. Finally, we discuss potential therapeutics targeting MDSCs.


Subject(s)
Immunomodulation/immunology , Macrophages/immunology , Myeloid-Derived Suppressor Cells/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , Disease Models, Animal , Humans , Immune Evasion/immunology , Macrophages/cytology , Monocytes/cytology , Monocytes/immunology , Myeloid-Derived Suppressor Cells/cytology
2.
J Cell Signal ; 2(3): 221-227, 2021.
Article in English | MEDLINE | ID: mdl-34671766

ABSTRACT

Hepatocellular carcinoma (HCC) is a significant cause of cancer mortality worldwide. Chronic hepatic inflammation and fibrosis play a critical role in the development of HCC. Liver fibrosis develops as a result of response to injury such that a persistent and excessive wound healing response induces extracellular matrix (ECM) deposition leading to HCC. PAI-1 is a fibrinolysis inhibitor involved in regulating protein degradation and homeostasis while assisting wound healing. PAI-1 presents increased levels in various diseases such as fibrosis, cancer, obesity and metabolic syndrome. Moreover, PAI-1 has been extensively studied for developing potential therapies against fibrosis. In the present review, we summarize how PAI-1 affects oncogenesis during liver disease progression based on the recently published literatures. Although there are controversies regarding the role of PAI-1 and approaches to treatment, this review suggests that proper manipulation of PAI-1 activity could provide a novel therapeutic option on the development of chronic liver disease via modulation of cancer stem-like cells (CSCs) differentiation.

3.
J Virol ; 95(10)2021 04 26.
Article in English | MEDLINE | ID: mdl-33627392

ABSTRACT

Plasminogen activator inhibitor-1 (PAI-1) is a critical factor that regulates protein synthesis and degradation. The increased PAI-1 levels are detectable in the serum of patients with chronic hepatitis C virus (HCV) liver disease. The differentiation state and motility of HCV-induced cancer stem-like cells (CSC) play a major role in severe liver disease progression. However, the role of PAI-1 in the pathological process of chronic liver diseases remains unknown. In this study, we determined how PAI-1 affects the differentiation of CSC state in hepatocytes upon HCV infection. We found that HCV infection induced the expression of PAI-1 while decreasing miR-30c expression in Huh7.5.1 cells. Similar results were obtained from isolated hepatocytes from humanized liver mice after HCV infection. Moreover, decreased miR-30c expression in HCV-infected hepatocytes was associated with the increased levels of PAI-1 mRNA and protein. Notably, the increased PAI-1 levels resulted in the activation of Protein Kinase B/AKT, a major mediator of cell proliferation, in HCV-infected hepatocytes along with the increased expression of CSC markers such as Human Differentiated Protein (CD) 133, Epithelial cell adhesion molecule (EpCAM), Octamer 4 (Oct4), Nanog, Cyclin D1, and MYC. Moreover, blockade of PAI-1 activity by miR-30c mimic and anti-PAI-1 mAb abrogated the AKT activation with decreased expression of CSC markers. Our findings suggest that HCV infection induces the CSC state via PAI-1-mediated AKT activation in hepatocytes. It implicates that the manipulation of PAI-1 activity could provide potential therapeutics to prevent the development of HCV-associated chronic liver diseases.IMPORTANCEThe progression of chronic liver disease by HCV infection is considered a major risk factor for hepatocellular carcinoma (HCC), one of the major causes of death from cancer. Recent studies have demonstrated that increased CSC properties in HCV-infected hepatocytes are associated with the progression of HCC. Since proteins and miRNAs production by HCV-infected hepatocytes can play various roles in physiological processes, investigating these factors can potentially lead to new therapeutic targets. However, the mechanism of HCV associated progression of hepatocytes to CSC remains unclear. Here we identify the roles of PAI-1 and miR-30c in the progression of CSC during HCV infection in hepatocytes. Our data shows that increased secretion of PAI-1 following HCV infection promotes this CSC state and activation of AKT. We report that the inhibition of PAI-1 by miR-30c mimic reduces HCV associated CSC properties in hepatocytes. Taken together, targeting this interaction of secreted PAI-1 and miR-30c in HCV-infected hepatocytes may provide a potential therapeutic intervention against the progression to chronic liver diseases and HCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...